In this study, acetate derivatives were obtained from the reaction of acetophenones using diethyl carbonate. The acidic proton of CH2 moiety was abstracted using a suitable base and α-propargyl-β-ketoester (non-conjugated ynone) derivatives 3a-c were obtained from the reaction of the acetate derivatives with propargyl bromide. By removing the ester group of α propargyl-β-ketoester derivatives under suitable conditions, α-propargyl acetophenones (non-conjugated ynone) 4a-c were obtained. In this study, 6 different unconjugated ynone derivatives were synthesized as starting material with yield in a range of 60-95%. Cyclization reactions with propargyl amine in the presence of three different unconjugated ynone derivatives, metal catalysts were investigated. The synthesis of propargyl pyrroles 7a-c having substituents on C-2 and C-5 was completed.
The author thanks to Science Research and Applied Center in Van Yüzüncü Yil University for their research facilities.
References
1. Sari O, Seybek AF, Kaya S, Menges N, Erdem SS, Balci M. Mechanistic Insights into the Reaction of N ‐Propargylated Pyrrole‐ and Indole‐Carbaldehyde with Ammonia, Alkyl Amines, and Branched Amines: A Synthetic and Theoretical Investigation. Eur J Org Chem. 2019 Sep;2019(31–32):5261–74.
2. Özer MS, Menges N, Keskin S, Şahin E, Balci M. Synthesis of Pyrrole-Fused C , N -Cyclic Azomethine Imines and Pyrazolopyrrolopyrazines: Analysis of Their Aromaticity Using Nucleus-Independent Chemical Shifts Values. Org Lett. 2016 Feb 5;18(3):408–11.
3. Taskaya S, Menges N, Balci M. Gold-catalyzed formation of pyrrolo- and indolo-oxazin-1-one derivatives: The key structure of some marine natural products. Beilstein J Org Chem. 2015 May 28;11:897–905.
4. Krzeszewski M, Gryko D, Gryko DT. The Tetraarylpyrrolo[3,2- b ]pyrroles—From Serendipitous Discovery to Promising Heterocyclic Optoelectronic Materials. Acc Chem Res. 2017 Sep 19;50(9):2334–45.
5. Domagala A, Jarosz T, Lapkowski M. Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives. Eur J Med Chem. 2015 Jul;100:176–87. .
6. Khajuria R, Dham S, Kapoor KK. Active methylenes in the synthesis of a pyrrole motif: an imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Adv. 2016;6(43):37039–66.
7. Fürstner A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew Chem Int Ed. 2003 Aug 11;42(31):3582–603.
9. Wilkerson WW, Copeland RA, Covington M, Trzaskos JM. Antiinflammatory 4,5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition. J Med Chem. 1995 Sep;38(20):3895–901.
10. Rawat P, Singh RN, Ranjan A, Gautam A, Trivedi S, Kumar M. Study of antimicrobial and antioxidant activities of pyrrole-chalcones. J Mol Struct. 2021 Mar;1228:129483.
11. Lee H, Lee J, Lee S, Shin Y, Jung W, Kim J-H, et al. A novel class of highly potent, selective, and non-peptidic inhibitor of ras farnesyltransferase (FTase). Bioorg Med Chem Lett. 2001 Dec;11(23):3069–72.
12. Ahmad S, Alam O, Naim MohdJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem. 2018 Sep;157:527–61.
13. Gholap SS. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem. 2016 Mar;110:13–31.
14. Yang H-B, Selander N. Divergent Iron-Catalyzed Coupling of O -Acyloximes with Silyl Enol Ethers. Chem - Eur J. 2017 Feb 3;23(8):1779–83.
15. Brand J, Charpentier J, Waser J. Direct Alkynylation of Indole and Pyrrole Heterocycles. Angew Chem Int Ed. 2009 Nov 23;48(49):9346–9.
16. Ren W, Xia Y, Ji S-J, Zhang Y, Wan X, Zhao J. Wacker-Type Oxidation of Alkynes into 1,2-Diketones Using Molecular Oxygen. Org Lett. 2009 Apr 16;11(8):1841–4.
17. Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat Chem. 2013 Aug;5(8):718–23.
18. Chen L, Chen K, Zhu S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem. 2018 Jun;4(6):1208–62.
19. Trost BM, Li C-J, editors. Modern alkyne chemistry: catalytic and atom-economic transformations. Weinheim: Wiley-VCH; 2015. 402 p. ISBN: 978-3-527-33505-3.
20. Haubmann C, Hübner H, Gmeiner P. Piperidinylpyrroles: Design, synthesis and binding properties of novel and selective dopamine D4 receptor ligands. Bioorg Med Chem Lett. 1999 Nov;9(21):3143–6.
21. Brachet E, Belmont P. Palladium-Catalyzed Regioselective Alkynylation of Pyrroles and Azoles under Mild Conditions: Application to the Synthesis of a Dopamine D-4 Receptor Agonist. J Org Chem. 2015 Aug 7;80(15):7519–29.
22. Bellina F, La Manna M, Rosadoni E. Undirected, Selective Csp2-H Alkynylation of Five-membered Heteroarenes. Curr Org Chem. 2021 Oct 22;25(18):2116–41.
23. Galindo MA, Hannant J, Harrington RW, Clegg W, Horrocks BR, Pike AR, et al. Pyrrolyl-, 2-(2-thienyl)pyrrolyl- and 2,5-bis(2-thienyl)pyrrolyl-nucleosides: synthesis, molecular and electronic structure, and redox behaviour of C5-thymidine derivatives. Org Biomol Chem. 2011;9(5):1555.
24. Menges N, Sari O, Abdullayev Y, Erdem SS, Balci M. Design and Synthesis of Pyrrolotriazepine Derivatives: An Experimental and Computational Study. J Org Chem. 2013 Jun 7;78(11):5184–95.
25. Huo X, Chen X, Yu L, Zhang C, Zeng L, Zhu H, et al. Transition-metal-free and facile synthesis of 3-alkynylpyrrole-2,4-dicarboxylates from methylene isocyanides and propiolaldehyde. New J Chem. 2021;45(36):16430–3.
26. Taşdemir V, Kuzu B, Tan M, Genç H, Menges N. Copper-Catalyzed Synthesis of Fused Imidazopyrazine N-Oxide Skeletons. Synlett. 2019 Feb;30(03):307–10.
28. Nájera C, Sydnes LK, Yus M. Conjugated Ynones in Organic Synthesis. Chem Rev. 2019 Oct 23;119(20):11110–244.
29. Taşdemir V, Menges N. Gold‐catalyzed Cyclization of Non‐conjugated Ynone‐oxime Derivatives: Incorporation of Solvent Molecule. Asian J Org Chem. 2020 Dec;9(12):2108–11.
30. Bräse S, Wertal nee Nüske H, Frank D, Vidović D, de Meijere A. Intramolecular Heck Couplings and Cycloisomerizations of Bromodienes and Enynes with 1′,1′-Disubstituted Methylenecyclopropane Terminators: Efficient Syntheses of [3]Dendralenes: Efficient Syntheses of [3]Dendralenes. Eur J Org Chem. 2005 Oct;2005(19):4167–78.
31. Wu TR, Chong JM. Ligand-Catalyzed Asymmetric Alkynylboration of Enones: A New Paradigm for Asymmetric Synthesis Using Organoboranes. J Am Chem Soc. 2005 Mar 1;127(10):3244–5.
32. Vatansever EC, Kılıç K, Özer MS, Koza G, Menges N, Balci M. Intermolecular heterocyclization of alkynones with 2-mercaptoacetaldehyde under metal-free conditions: synthesis of 2,3-disubstituted thiophenes. Tetrahedron Lett. 2015 Sep;56(40):5386–9.
33. Naoe S, Saito T, Uchiyama M, Oishi S, Fujii N, Ohno H. Direct Construction of Fused Indoles by Gold-Catalyzed Cascade Cyclization of Conjugated Diynes. Org Lett. 2015 Apr 3;17(7):1774–7.
34. Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne‐Ynamides. Angew Chem Int Ed. 2019 Feb 18;58(8):2289–94.
35. Aggarwal T, Kumar S, Verma AK. Iodine-mediated synthesis of heterocycles via electrophilic cyclization of alkynes. Org Biomol Chem. 2016;14(32):7639–53.
36. Balci M. Recent advances in the synthesis of fused heterocycles with new skeletons via alkyne cyclization. Tetrahedron Lett. 2020 Jun;61(24):151994.
1. Sari O, Seybek AF, Kaya S, Menges N, Erdem SS, Balci M. Mechanistic Insights into the Reaction of N ‐Propargylated Pyrrole‐ and Indole‐Carbaldehyde with Ammonia, Alkyl Amines, and Branched Amines: A Synthetic and Theoretical Investigation. Eur J Org Chem. 2019 Sep;2019(31–32):5261–74.
2. Özer MS, Menges N, Keskin S, Şahin E, Balci M. Synthesis of Pyrrole-Fused C , N -Cyclic Azomethine Imines and Pyrazolopyrrolopyrazines: Analysis of Their Aromaticity Using Nucleus-Independent Chemical Shifts Values. Org Lett. 2016 Feb 5;18(3):408–11.
3. Taskaya S, Menges N, Balci M. Gold-catalyzed formation of pyrrolo- and indolo-oxazin-1-one derivatives: The key structure of some marine natural products. Beilstein J Org Chem. 2015 May 28;11:897–905.
4. Krzeszewski M, Gryko D, Gryko DT. The Tetraarylpyrrolo[3,2- b ]pyrroles—From Serendipitous Discovery to Promising Heterocyclic Optoelectronic Materials. Acc Chem Res. 2017 Sep 19;50(9):2334–45.
5. Domagala A, Jarosz T, Lapkowski M. Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives. Eur J Med Chem. 2015 Jul;100:176–87. .
6. Khajuria R, Dham S, Kapoor KK. Active methylenes in the synthesis of a pyrrole motif: an imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Adv. 2016;6(43):37039–66.
7. Fürstner A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew Chem Int Ed. 2003 Aug 11;42(31):3582–603.
9. Wilkerson WW, Copeland RA, Covington M, Trzaskos JM. Antiinflammatory 4,5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition. J Med Chem. 1995 Sep;38(20):3895–901.
10. Rawat P, Singh RN, Ranjan A, Gautam A, Trivedi S, Kumar M. Study of antimicrobial and antioxidant activities of pyrrole-chalcones. J Mol Struct. 2021 Mar;1228:129483.
11. Lee H, Lee J, Lee S, Shin Y, Jung W, Kim J-H, et al. A novel class of highly potent, selective, and non-peptidic inhibitor of ras farnesyltransferase (FTase). Bioorg Med Chem Lett. 2001 Dec;11(23):3069–72.
12. Ahmad S, Alam O, Naim MohdJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem. 2018 Sep;157:527–61.
13. Gholap SS. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem. 2016 Mar;110:13–31.
14. Yang H-B, Selander N. Divergent Iron-Catalyzed Coupling of O -Acyloximes with Silyl Enol Ethers. Chem - Eur J. 2017 Feb 3;23(8):1779–83.
15. Brand J, Charpentier J, Waser J. Direct Alkynylation of Indole and Pyrrole Heterocycles. Angew Chem Int Ed. 2009 Nov 23;48(49):9346–9.
16. Ren W, Xia Y, Ji S-J, Zhang Y, Wan X, Zhao J. Wacker-Type Oxidation of Alkynes into 1,2-Diketones Using Molecular Oxygen. Org Lett. 2009 Apr 16;11(8):1841–4.
17. Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat Chem. 2013 Aug;5(8):718–23.
18. Chen L, Chen K, Zhu S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem. 2018 Jun;4(6):1208–62.
19. Trost BM, Li C-J, editors. Modern alkyne chemistry: catalytic and atom-economic transformations. Weinheim: Wiley-VCH; 2015. 402 p. ISBN: 978-3-527-33505-3.
20. Haubmann C, Hübner H, Gmeiner P. Piperidinylpyrroles: Design, synthesis and binding properties of novel and selective dopamine D4 receptor ligands. Bioorg Med Chem Lett. 1999 Nov;9(21):3143–6.
21. Brachet E, Belmont P. Palladium-Catalyzed Regioselective Alkynylation of Pyrroles and Azoles under Mild Conditions: Application to the Synthesis of a Dopamine D-4 Receptor Agonist. J Org Chem. 2015 Aug 7;80(15):7519–29.
22. Bellina F, La Manna M, Rosadoni E. Undirected, Selective Csp2-H Alkynylation of Five-membered Heteroarenes. Curr Org Chem. 2021 Oct 22;25(18):2116–41.
23. Galindo MA, Hannant J, Harrington RW, Clegg W, Horrocks BR, Pike AR, et al. Pyrrolyl-, 2-(2-thienyl)pyrrolyl- and 2,5-bis(2-thienyl)pyrrolyl-nucleosides: synthesis, molecular and electronic structure, and redox behaviour of C5-thymidine derivatives. Org Biomol Chem. 2011;9(5):1555.
24. Menges N, Sari O, Abdullayev Y, Erdem SS, Balci M. Design and Synthesis of Pyrrolotriazepine Derivatives: An Experimental and Computational Study. J Org Chem. 2013 Jun 7;78(11):5184–95.
25. Huo X, Chen X, Yu L, Zhang C, Zeng L, Zhu H, et al. Transition-metal-free and facile synthesis of 3-alkynylpyrrole-2,4-dicarboxylates from methylene isocyanides and propiolaldehyde. New J Chem. 2021;45(36):16430–3.
26. Taşdemir V, Kuzu B, Tan M, Genç H, Menges N. Copper-Catalyzed Synthesis of Fused Imidazopyrazine N-Oxide Skeletons. Synlett. 2019 Feb;30(03):307–10.
28. Nájera C, Sydnes LK, Yus M. Conjugated Ynones in Organic Synthesis. Chem Rev. 2019 Oct 23;119(20):11110–244.
29. Taşdemir V, Menges N. Gold‐catalyzed Cyclization of Non‐conjugated Ynone‐oxime Derivatives: Incorporation of Solvent Molecule. Asian J Org Chem. 2020 Dec;9(12):2108–11.
30. Bräse S, Wertal nee Nüske H, Frank D, Vidović D, de Meijere A. Intramolecular Heck Couplings and Cycloisomerizations of Bromodienes and Enynes with 1′,1′-Disubstituted Methylenecyclopropane Terminators: Efficient Syntheses of [3]Dendralenes: Efficient Syntheses of [3]Dendralenes. Eur J Org Chem. 2005 Oct;2005(19):4167–78.
31. Wu TR, Chong JM. Ligand-Catalyzed Asymmetric Alkynylboration of Enones: A New Paradigm for Asymmetric Synthesis Using Organoboranes. J Am Chem Soc. 2005 Mar 1;127(10):3244–5.
32. Vatansever EC, Kılıç K, Özer MS, Koza G, Menges N, Balci M. Intermolecular heterocyclization of alkynones with 2-mercaptoacetaldehyde under metal-free conditions: synthesis of 2,3-disubstituted thiophenes. Tetrahedron Lett. 2015 Sep;56(40):5386–9.
33. Naoe S, Saito T, Uchiyama M, Oishi S, Fujii N, Ohno H. Direct Construction of Fused Indoles by Gold-Catalyzed Cascade Cyclization of Conjugated Diynes. Org Lett. 2015 Apr 3;17(7):1774–7.
34. Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne‐Ynamides. Angew Chem Int Ed. 2019 Feb 18;58(8):2289–94.
35. Aggarwal T, Kumar S, Verma AK. Iodine-mediated synthesis of heterocycles via electrophilic cyclization of alkynes. Org Biomol Chem. 2016;14(32):7639–53.
36. Balci M. Recent advances in the synthesis of fused heterocycles with new skeletons via alkyne cyclization. Tetrahedron Lett. 2020 Jun;61(24):151994.