Research Article
BibTex RIS Cite
Year 2024, , 461 - 466, 15.05.2024
https://doi.org/10.18596/jotcsa.1342058

Abstract

References

  • 1. Senberber FT, Derun EM. Thermal Kinetics and Thermodynamics of the Dehydration Reaction of Inyoite (Ca2B6O6(OH)10 ⋅ 8H2O). Glass Phys Chem. 2020;46(1):64-71. Available from: <URL>
  • 2. Alp B, Atakul Savrik S, Balkose D. Preparation and Characterization of Copper Borates as Lubricant Additives. J Mater Sci Eng B. 2014;4(4). Available from: <URL>
  • 3. Thatribud A, Tungsurat T, Pengpan T. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Comput Mater Sci. 2014;81:601-6. Available from: <URL>
  • 4. Zia W, Siraj K, Faiz H, Firdos A. A facile synthesis of single phase delafossite CuBO 2 powders. Mater Res Express. 2019; 6(9):096314. Available from: <URL>
  • 5. Santra S, Das NS, Maiti S, Chattopadhyay KK. Wide band gap p-type CuBO2 nanostructures by hydrothermal route and fabrication high quality p-CuBO2/n-ZnO nano-heterojunction. Chem Phys Lett. 2014;604:97-100. Available from: <URL>
  • 6. Pisarev RV, Boldyrev KN, Popova MN, Smirnov AN, Davydov VYu, Bezmaternykh LN, vd. Lattice dynamics of piezoelectric copper metaborate CuB2O4. Phys Rev B. 2013;88(2):024301. Available from: <URL>
  • 7. Liu LL, Zhu D, Cao LL, Stephan DW. N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH + , X = S, Se, Te). Dalton Trans. 2017;46(10):3095-9. Available from: <URL>
  • 8. Soylu M, Al-Ghamdi AA, Omran SB, Yakuphanoglu F. Rectifying structure with high voltage operation based on CuBO2 as an UV photocatalyst. J Alloys Compd. 2014;617:602-8. Available from: <URL>
  • 9. Zhang HH, Kong N, Wang J, Liu ZH. Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M=Na,K). J Chem Thermodyn. 2015;89:164-8. Available from: <URL>
  • 10. Hu ZS, Dong JX, Chen GX, Lou F. Preparation of nanometer copper borate with supercritical carbon dioxide drying. Powder Technol. 1999;102(2):171-6. Available from: <URL>
  • 11. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Materials. 2021;14(14):4017. Available from:https://www.mdpi.com/1996-1944/14/14/4017
  • 12. Wang JJ, Wei Q, Yang BF, Yang GY. Two New Copper Borates with Mesoscale Cubic Supramolecular Cages Assembled from {Cu4@B20} Clusters. Chem - Eur J. 2017;23(12):2774-7. Available from: <URL>
  • 13. Ursu D, Dabici A, Miclau M, Miclau N. Low-temperature hydrothermal synthesis of hierarchical flower-like CuB2O4 superstructures. Process Appl Ceram. 2020;14(2):113-8. Available from: <URL>
  • 14. Zheng Y, Wang Z, Tian Y, Qu Y, Li S, An D, vd. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies. Colloids Surf Physicochem Eng Asp. 2009;349(1-3):156-61. Available from: <URL>
  • 15. Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2 H ‐Indazoles and 5‐Substituted 1 H ‐Tetrazoles. Chemistry Select. 2021;6(4):746-53. Available from: <URL>
  • 16. Kipcak AS, Senberber FT, Aydin Yuksel S, Derun EM, Piskin S. Synthesis, characterisation, electrical and optical properties of copper borate compounds. Mater Res Bull. 2015;70:442-8. Available from: <URL>
  • 17. Senberber Dumanli FT, Moroydor Derun E. A comparative study of ultrasonic-assisted methods to synthesise spinel (CoAl2O4) nanoparticles. Ceram Int. 2022;48(13):19047-55. Available from: <URL>
  • 18. Fogler HS. Elements Of Chemical Reaction Engineering. Prentice Hall India; 1999. 1004 s.
  • 19. Yongzhong J, Shiyang G, Shuping X, Jun L. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(7):1291-7.

Sonochemical Synthesis of Copper Borates: Effect of Reaction Conditions on the Characteristic Properties

Year 2024, , 461 - 466, 15.05.2024
https://doi.org/10.18596/jotcsa.1342058

Abstract

The effect of ultrasonic treatment on liquid-state production and the characteristic features of synthesized powder were studied in liquid-state conditions. In sonochemical synthesis, the operation parameters of mole ratio, reaction temperature, and time were optimized. The synthesis was achieved in moderate conditions such as mole ratio of copper: sodium: boron (Cu: Na: B) 1:2:1, 70°C and 2.5 minutes. The prepared samples were identified as copper borate (Cu(BO2)2) with the powder diffraction file number "00-001-0472". The reaction yields were also increased from 50% to 71.5% with the modification of the experimental procedure. The specific FT-IR peaks were observed at 1090, 985, 872, 781 and 731 cm-1 band values. In the morphological analyses, the agglomerations of multi-angular particles were seen. The results showed the affirmative effects of the possible use of the ultrasonic treatment on both the practical synthesis and the increase of characteristics.

References

  • 1. Senberber FT, Derun EM. Thermal Kinetics and Thermodynamics of the Dehydration Reaction of Inyoite (Ca2B6O6(OH)10 ⋅ 8H2O). Glass Phys Chem. 2020;46(1):64-71. Available from: <URL>
  • 2. Alp B, Atakul Savrik S, Balkose D. Preparation and Characterization of Copper Borates as Lubricant Additives. J Mater Sci Eng B. 2014;4(4). Available from: <URL>
  • 3. Thatribud A, Tungsurat T, Pengpan T. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Comput Mater Sci. 2014;81:601-6. Available from: <URL>
  • 4. Zia W, Siraj K, Faiz H, Firdos A. A facile synthesis of single phase delafossite CuBO 2 powders. Mater Res Express. 2019; 6(9):096314. Available from: <URL>
  • 5. Santra S, Das NS, Maiti S, Chattopadhyay KK. Wide band gap p-type CuBO2 nanostructures by hydrothermal route and fabrication high quality p-CuBO2/n-ZnO nano-heterojunction. Chem Phys Lett. 2014;604:97-100. Available from: <URL>
  • 6. Pisarev RV, Boldyrev KN, Popova MN, Smirnov AN, Davydov VYu, Bezmaternykh LN, vd. Lattice dynamics of piezoelectric copper metaborate CuB2O4. Phys Rev B. 2013;88(2):024301. Available from: <URL>
  • 7. Liu LL, Zhu D, Cao LL, Stephan DW. N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH + , X = S, Se, Te). Dalton Trans. 2017;46(10):3095-9. Available from: <URL>
  • 8. Soylu M, Al-Ghamdi AA, Omran SB, Yakuphanoglu F. Rectifying structure with high voltage operation based on CuBO2 as an UV photocatalyst. J Alloys Compd. 2014;617:602-8. Available from: <URL>
  • 9. Zhang HH, Kong N, Wang J, Liu ZH. Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M=Na,K). J Chem Thermodyn. 2015;89:164-8. Available from: <URL>
  • 10. Hu ZS, Dong JX, Chen GX, Lou F. Preparation of nanometer copper borate with supercritical carbon dioxide drying. Powder Technol. 1999;102(2):171-6. Available from: <URL>
  • 11. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Materials. 2021;14(14):4017. Available from:https://www.mdpi.com/1996-1944/14/14/4017
  • 12. Wang JJ, Wei Q, Yang BF, Yang GY. Two New Copper Borates with Mesoscale Cubic Supramolecular Cages Assembled from {Cu4@B20} Clusters. Chem - Eur J. 2017;23(12):2774-7. Available from: <URL>
  • 13. Ursu D, Dabici A, Miclau M, Miclau N. Low-temperature hydrothermal synthesis of hierarchical flower-like CuB2O4 superstructures. Process Appl Ceram. 2020;14(2):113-8. Available from: <URL>
  • 14. Zheng Y, Wang Z, Tian Y, Qu Y, Li S, An D, vd. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies. Colloids Surf Physicochem Eng Asp. 2009;349(1-3):156-61. Available from: <URL>
  • 15. Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2 H ‐Indazoles and 5‐Substituted 1 H ‐Tetrazoles. Chemistry Select. 2021;6(4):746-53. Available from: <URL>
  • 16. Kipcak AS, Senberber FT, Aydin Yuksel S, Derun EM, Piskin S. Synthesis, characterisation, electrical and optical properties of copper borate compounds. Mater Res Bull. 2015;70:442-8. Available from: <URL>
  • 17. Senberber Dumanli FT, Moroydor Derun E. A comparative study of ultrasonic-assisted methods to synthesise spinel (CoAl2O4) nanoparticles. Ceram Int. 2022;48(13):19047-55. Available from: <URL>
  • 18. Fogler HS. Elements Of Chemical Reaction Engineering. Prentice Hall India; 1999. 1004 s.
  • 19. Yongzhong J, Shiyang G, Shuping X, Jun L. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(7):1291-7.
There are 19 citations in total.

Details

Primary Language English
Subjects Non-Metal Chemistry, Inorganic Materials
Journal Section RESEARCH ARTICLES
Authors

Fatma Tuğçe Şenberber Dumanlı

Sibel Karaağaç 0000-0001-7713-1365

Azmi Seyhun Kıpçak 0000-0003-2068-6065

Emek Möröydor Derun

Publication Date May 15, 2024
Submission Date August 12, 2023
Acceptance Date December 6, 2023
Published in Issue Year 2024

Cite

Vancouver Şenberber Dumanlı FT, Karaağaç S, Kıpçak AS, Möröydor Derun E. Sonochemical Synthesis of Copper Borates: Effect of Reaction Conditions on the Characteristic Properties. JOTCSA. 2024;11(2):461-6.