Research Article
BibTex RIS Cite

Recycling of Waste Polymethyl-Methacrylate as an Optical Transparent Host

Year 2024, , 1141 - 1150, 30.08.2024
https://doi.org/10.18596/jotcsa.1412323

Abstract

Reusing waste or otherwise discarded polymethyl methacrylate (wPMMA) as a host matrix for optical photonic applications such as down-conversion or luminescence solar concentrators can spare the use of pristine materials, with strong implications for sustainability. Here, a homogeneous emissive film was produced using wPMMA by dissolving in toluene and adding a fluorescent perylene dye (perylene-3,4,9,10-tetracarboxylic hexyl ester, PTHE) followed by spin coating casting. This resulting film is optically transparent and green-emissive with a high photoluminescence quantum yield (PLQY of 84%). It has been investigated by various spectroscopic techniques such as absorption, photoluminescence, emission lifetime, and dye photostability. While this film exhibited some excimer PL at longer wavelengths compared to the solution phase, it also increased its emission lifetime by approximately 3 times. Moreover, while the CIE coordinates (x, y) of the blue-green PL in the solution phase was 0.21, 0.56, the PL spectrum of the wPMMA:PTHE film instead had (CIE, x, y) of 0.30, 0.60. Recycling these and similar suitable waste polymers and transforming them into value-added products such as down-conversion or luminescent solar concentrator films can contribute to sustainable development goals within the scope of clean energy, energy efficiency, and waste utilization.

Thanks

The author would like to thank Dr. Andrew Danos for his support of this work and suggestions.

References

  • 1. Fan LT, Retzloff DG, Vanderpool WO. Solid waste-plastics composites. Physical properties and feasibility for production. Environ Sci Technol [Internet]. 1972 Dec 1;6(13):1085–91. Available from: <URL>.
  • 2. Bossa N, Sipe JM, Berger W, Scott K, Kennedy A, Thomas T, et al. Quantifying mechanical abrasion of mwcnt nanocomposites used in 3d printing: Influence of cnt content on abrasion products and rate of microplastic production. Environ Sci Technol [Internet]. 2021 Aug 3;55(15):10332–42. Available from: <URL>.
  • 3. Jiang H, Zhang Y, Wang H. Surface reactions in selective modification: The prerequisite for plastic flotation. Environ Sci Technol [Internet]. 2020 Aug 18;54(16):9742–56. Available from: <URL>.
  • 4. Shamsuyeva M, Endres HJ. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos Part C Open Access [Internet]. 2021 Oct;6:100168. Available from: <URL>.
  • 5. Ali U, Karim KJBA, Buang NA. A Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev [Internet]. 2015 Oct 2;55(4):678–705. Available from: <URL>.
  • 6. Yaqoob L, Noor T, Iqbal N. Conversion of plastic waste to carbon-based compounds and application in energy storage devices. ACS Omega [Internet]. 2022 Apr 26;7(16):13403–35. Available from: <URL>.
  • 7. Santidrián A, Sanahuja O, Villacampa B, Diez JL, Benito AM, Maser WK, et al. Chemical postdeposition treatments to improve the adhesion of carbon nanotube films on plastic substrates. ACS Omega [Internet]. 2019 Feb 28;4(2):2804–11. Available from: <URL>.
  • 8. Wang Y, Wang H, Li S, Sun S. Waste PET Plastic-derived CoNi-based metal–organic framework as an anode for lithium-ion batteries. ACS Omega [Internet]. 2022 Oct 4;7(39):35180–90. Available from: <URL>.
  • 9. Tsakona M, Baker E, Rucevska I, Maes T, Appelquist R, Macmillan-Lawler M, et al. Drowning In plastics – marine litter and plastic waste vital graphics [Internet]. United Nations Environment Programme. 2021. 6–77 p. Available from: <URL>.
  • 10. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science (80- ) [Internet]. 2015 Feb 13;347(6223):768–71. Available from: <URL>.
  • 11. Barnes DKA, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci [Internet]. 2009 Jul 27;364(1526):1985–98. Available from: <URL>.
  • 12. Authors R, Brighty:, Jones GC, V4 RJ. High-level science review for “A Plastic Oceans” film contents section [Internet]. 2016. Available from: <URL>.
  • 13. Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag [Internet]. 2009 Oct;29(10):2625–43. Available from: <URL>.
  • 14. Naderi Kalali E, Lotfian S, Entezar Shabestari M, Khayatzadeh S, Zhao C, Yazdani Nezhad H. A critical review of the current progress of plastic waste recycling technology in structural materials. Curr Opin Green Sustain Chem [Internet]. 2023 Apr;40:100763. Available from: <URL>.
  • 15. Manoukian OS, Sardashti N, Stedman T, Gailiunas K, Ojha A, Penalosa A, et al. Biomaterials for tissue engineering and regenerative medicine. In: Encyclopedia of Biomedical Engineering [Internet]. Elsevier; 2019. p. 462–82. Available from: <URL>.
  • 16. Deka N, Bera A, Roy D, De P. Methyl methacrylate-based copolymers: Recent developments in the areas of transparent and stretchable active matrices. ACS Omega [Internet]. 2022 Oct 25;7(42):36929–44. Available from: <URL>.
  • 17. Li Y, Wang YQ, Liu D, Gao Y, Wang SN, Qiu H. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing. ACS Omega [Internet]. 2021 Jun 8;6(22):14629–38. Available from: <URL>.
  • 18. El-Bashir SM. Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators. Renew Energy [Internet]. 2018 Jan;115:269–75. Available from: <URL>.
  • 19. El-Bashir SM. Coumarin-doped PC/CdSSe/ZnS nanocomposite films: A reduced self-absorption effect for luminescent solar concentrators. J Lumin [Internet]. 2019 Feb;206:426–31. Available from: <URL>.
  • 20. Al-Mahdouri A, Gonome H, Okajima J, Maruyama S. Theoretical and experimental study of solar thermal performance of different greenhouse cladding materials. Sol Energy [Internet]. 2014 Sep;107:314–27. Available from: <URL>.
  • 21. Aksoy E, Demir N, Varlikli C. White LED light production using dibromoperylene derivatives in down conversion of energy. Can J Phys [Internet]. 2018 Jul;96(7):734–9. Available from: <URL>.
  • 22. Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, et al. Photophysical properties of cyclometalated platinum(II) diphosphine compounds in the solid state and in pmma films. ACS Omega [Internet]. 2021 Oct 26;6(42):28316–25. Available from: <URL>.
  • 23. Langhals H, Schlücker T, Reiners F, Karaghiosoff K. Terminal terthiophenediones: fast-decay fluorescent dyes and their efficient syntheses. ACS Omega [Internet]. 2021 Sep 28;6(38):24973–80. Available from: <URL>.
  • 24. Sengottuvelu D, Shaik AK, Mishra S, Ahmad H, Abbaszadeh M, Hammer NI, et al. Multicolor nitrogen-doped carbon quantum dots for environment-dependent emission tuning. ACS Omega [Internet]. 2022 Aug 9;7(31):27742–54. Available from: <URL>.
  • 25. Fang H, Xia D, Zhao C, Zhou S, Wang R, Zang Y, et al. Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dye Pigment [Internet]. 2022 Jul;203:110355. Available from: <URL>.
  • 26. Zheng X, Wei Q, Shan T, Zhang Y, Zhong H. The halogen effect of perylene diimide-based non-fullerene acceptors on photovoltaic properties. Dye Pigment [Internet]. 2022 May;201:110232. Available from: <URL>.
  • 27. Keum C, Becker D, Archer E, Bock H, Kitzerow H, Gather MC, et al. Organic light‐emitting diodes based on a columnar liquid‐crystalline perylene emitter. Adv Opt Mater [Internet]. 2020 Sep 15;8(17):2000414. Available from: <URL>.
  • 28. Ostos FJ, Iasilli G, Carlotti M, Pucci A. High-Performance luminescent solar concentrators based on poly(cyclohexylmethacrylate) (PCHMA) films. Polymers (Basel) [Internet]. 2020 Dec 3;12(12):2898. Available from: <URL>.
  • 29. Schiphorst J ter, Kendhale AM, Debije MG, Menelaou C, Herz LM, Schenning APHJ. Dichroic perylene bisimide triad displaying energy transfer in switchable luminescent solar concentrators. Chem Mater [Internet]. 2014 Jul 8;26(13):3876–8. Available from: <URL>.
  • 30. Szukalska A, Szukalski A, Stachera J, Zajac D, Chrzumnicka E, Martynski T, et al. Perylene-based chromophore as a versatile dye for light amplification. Materials (Basel) [Internet]. 2022 Jan 27;15(3):980. Available from: <URL>.
  • 31. Liu Y, Wang K, Guo D, Jiang B. Supramolecular assembly of perylene bisimide with β‐cyclodextrin grafts as a solid‐state fluorescence sensor for vapor detection. Adv Funct Mater [Internet]. 2009 Jul 24;19(14):2230–5. Available from: <URL>.
  • 32. Yang N, Song S, Ren J, Liu C, Li Z, Qi H, et al. Controlled aggregation of a perylene-derived probe for near-infrared fluorescence imaging and phototherapy. ACS Appl Bio Mater [Internet]. 2021 Jun 21;4(6):5008–15. Available from: <URL>.
  • 33. Guner T, Aksoy E, Demir MM, Varlikli C. Perylene-embedded electrospun PS fibers for white light generation. Dye Pigment [Internet]. 2019 Jan;160:501–8. Available from: <URL>.
  • 34. Aksoy E, Danos A, Varlikli C, Monkman AP. Navigating CIE space for efficient TADF downconversion WOLEDs. Dye Pigment [Internet]. 2020 Dec;183:108707. Available from: <URL>.
  • 35. Zhang B, Lyskov I, Wilson LJ, Sabatini RP, Manian A, Soleimaninejad H, et al. FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation. J Mater Chem C [Internet]. 2020;8(26):8953–61. Available from: <URL>.
  • 36. Kozma E, Mróz W, Villafiorita-Monteleone F, Galeotti F, Andicsová-Eckstein A, Catellani M, et al. Perylene diimide derivatives as red and deep red-emitters for fully solution processable OLEDs. RSC Adv [Internet]. 2016;6(66):61175–9. Available from: <URL>.
  • 37. Aksoy E, Danos A, Li C, Monkman A, Varlıklı C. The Effect of imide substituents on the excited state properties of perylene diimide derivatives. Turkish J Sci Technol [Internet]. 2022 Mar 20;17(1):11–21. Available from: <URL>.
  • 38. Aksoy E, Danos A, Li C, Monkman AP, Varlikli C. Silylethynyl substitution for preventing aggregate formation in perylene diimides. J Phys Chem C [Internet]. 2021 Jun 17;125(23):13041–9. Available from: <URL>.
  • 39. Davis NJLK, MacQueen RW, Roberts DA, Danos A, Dehn S, Perrier S, et al. Energy transfer in pendant perylene diimide copolymers. J Mater Chem C [Internet]. 2016;4(35):8270–5. Available from: <URL>.
  • 40. de Sousa FDB. The role of plastic concerning the sustainable development goals: The literature point of view. Clean Responsible Consum [Internet]. 2021 Dec;3:100020. Available from: <URL>.
  • 41. Benning S, Kitzerow HS, Bock H, Achard MF. Fluorescent columnar liquid crystalline 3,4,9,10-tetra-(n-alkoxycarbonyl)-perylenes. Liq Cryst [Internet]. 2000 Jul;27(7):901–6. Available from: <URL>.
  • 42. Aksoy E, Bozkus V, Varlikli C. Tuning the colour of solution processed perylene tetraester based OLEDs from yellowish-green to greenish-white: A molecular engineering approach. Dye Pigment [Internet]. 2023 Mar;211:111050. Available from: <URL>.
  • 43. Hashem M, Rez MF, Fouad H, Elsarnagawy T, Elsharawy M, Umar A, et al. Influence of titanium oxide nanoparticles on the physical and thermomechanical behavior of poly methyl methacrylate (PMMA): A Denture Base Resin. Sci Adv Mater [Internet]. 2017 Jun 1;9(6):938–44. Available from: <URL>.
  • 44. Piosik E, Synak A, Paluszkiewicz J, Martyński T. Concentration dependent evolution of aggregates formed by chlorinated and non-chlorinated perylene tetracarboxylic acid esters in pure spin-coated films and in a PMMA matrix. J Lumin [Internet]. 2019 Feb;206:132–45. Available from: <URL>.
Year 2024, , 1141 - 1150, 30.08.2024
https://doi.org/10.18596/jotcsa.1412323

Abstract

References

  • 1. Fan LT, Retzloff DG, Vanderpool WO. Solid waste-plastics composites. Physical properties and feasibility for production. Environ Sci Technol [Internet]. 1972 Dec 1;6(13):1085–91. Available from: <URL>.
  • 2. Bossa N, Sipe JM, Berger W, Scott K, Kennedy A, Thomas T, et al. Quantifying mechanical abrasion of mwcnt nanocomposites used in 3d printing: Influence of cnt content on abrasion products and rate of microplastic production. Environ Sci Technol [Internet]. 2021 Aug 3;55(15):10332–42. Available from: <URL>.
  • 3. Jiang H, Zhang Y, Wang H. Surface reactions in selective modification: The prerequisite for plastic flotation. Environ Sci Technol [Internet]. 2020 Aug 18;54(16):9742–56. Available from: <URL>.
  • 4. Shamsuyeva M, Endres HJ. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos Part C Open Access [Internet]. 2021 Oct;6:100168. Available from: <URL>.
  • 5. Ali U, Karim KJBA, Buang NA. A Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev [Internet]. 2015 Oct 2;55(4):678–705. Available from: <URL>.
  • 6. Yaqoob L, Noor T, Iqbal N. Conversion of plastic waste to carbon-based compounds and application in energy storage devices. ACS Omega [Internet]. 2022 Apr 26;7(16):13403–35. Available from: <URL>.
  • 7. Santidrián A, Sanahuja O, Villacampa B, Diez JL, Benito AM, Maser WK, et al. Chemical postdeposition treatments to improve the adhesion of carbon nanotube films on plastic substrates. ACS Omega [Internet]. 2019 Feb 28;4(2):2804–11. Available from: <URL>.
  • 8. Wang Y, Wang H, Li S, Sun S. Waste PET Plastic-derived CoNi-based metal–organic framework as an anode for lithium-ion batteries. ACS Omega [Internet]. 2022 Oct 4;7(39):35180–90. Available from: <URL>.
  • 9. Tsakona M, Baker E, Rucevska I, Maes T, Appelquist R, Macmillan-Lawler M, et al. Drowning In plastics – marine litter and plastic waste vital graphics [Internet]. United Nations Environment Programme. 2021. 6–77 p. Available from: <URL>.
  • 10. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science (80- ) [Internet]. 2015 Feb 13;347(6223):768–71. Available from: <URL>.
  • 11. Barnes DKA, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci [Internet]. 2009 Jul 27;364(1526):1985–98. Available from: <URL>.
  • 12. Authors R, Brighty:, Jones GC, V4 RJ. High-level science review for “A Plastic Oceans” film contents section [Internet]. 2016. Available from: <URL>.
  • 13. Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag [Internet]. 2009 Oct;29(10):2625–43. Available from: <URL>.
  • 14. Naderi Kalali E, Lotfian S, Entezar Shabestari M, Khayatzadeh S, Zhao C, Yazdani Nezhad H. A critical review of the current progress of plastic waste recycling technology in structural materials. Curr Opin Green Sustain Chem [Internet]. 2023 Apr;40:100763. Available from: <URL>.
  • 15. Manoukian OS, Sardashti N, Stedman T, Gailiunas K, Ojha A, Penalosa A, et al. Biomaterials for tissue engineering and regenerative medicine. In: Encyclopedia of Biomedical Engineering [Internet]. Elsevier; 2019. p. 462–82. Available from: <URL>.
  • 16. Deka N, Bera A, Roy D, De P. Methyl methacrylate-based copolymers: Recent developments in the areas of transparent and stretchable active matrices. ACS Omega [Internet]. 2022 Oct 25;7(42):36929–44. Available from: <URL>.
  • 17. Li Y, Wang YQ, Liu D, Gao Y, Wang SN, Qiu H. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing. ACS Omega [Internet]. 2021 Jun 8;6(22):14629–38. Available from: <URL>.
  • 18. El-Bashir SM. Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators. Renew Energy [Internet]. 2018 Jan;115:269–75. Available from: <URL>.
  • 19. El-Bashir SM. Coumarin-doped PC/CdSSe/ZnS nanocomposite films: A reduced self-absorption effect for luminescent solar concentrators. J Lumin [Internet]. 2019 Feb;206:426–31. Available from: <URL>.
  • 20. Al-Mahdouri A, Gonome H, Okajima J, Maruyama S. Theoretical and experimental study of solar thermal performance of different greenhouse cladding materials. Sol Energy [Internet]. 2014 Sep;107:314–27. Available from: <URL>.
  • 21. Aksoy E, Demir N, Varlikli C. White LED light production using dibromoperylene derivatives in down conversion of energy. Can J Phys [Internet]. 2018 Jul;96(7):734–9. Available from: <URL>.
  • 22. Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, et al. Photophysical properties of cyclometalated platinum(II) diphosphine compounds in the solid state and in pmma films. ACS Omega [Internet]. 2021 Oct 26;6(42):28316–25. Available from: <URL>.
  • 23. Langhals H, Schlücker T, Reiners F, Karaghiosoff K. Terminal terthiophenediones: fast-decay fluorescent dyes and their efficient syntheses. ACS Omega [Internet]. 2021 Sep 28;6(38):24973–80. Available from: <URL>.
  • 24. Sengottuvelu D, Shaik AK, Mishra S, Ahmad H, Abbaszadeh M, Hammer NI, et al. Multicolor nitrogen-doped carbon quantum dots for environment-dependent emission tuning. ACS Omega [Internet]. 2022 Aug 9;7(31):27742–54. Available from: <URL>.
  • 25. Fang H, Xia D, Zhao C, Zhou S, Wang R, Zang Y, et al. Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dye Pigment [Internet]. 2022 Jul;203:110355. Available from: <URL>.
  • 26. Zheng X, Wei Q, Shan T, Zhang Y, Zhong H. The halogen effect of perylene diimide-based non-fullerene acceptors on photovoltaic properties. Dye Pigment [Internet]. 2022 May;201:110232. Available from: <URL>.
  • 27. Keum C, Becker D, Archer E, Bock H, Kitzerow H, Gather MC, et al. Organic light‐emitting diodes based on a columnar liquid‐crystalline perylene emitter. Adv Opt Mater [Internet]. 2020 Sep 15;8(17):2000414. Available from: <URL>.
  • 28. Ostos FJ, Iasilli G, Carlotti M, Pucci A. High-Performance luminescent solar concentrators based on poly(cyclohexylmethacrylate) (PCHMA) films. Polymers (Basel) [Internet]. 2020 Dec 3;12(12):2898. Available from: <URL>.
  • 29. Schiphorst J ter, Kendhale AM, Debije MG, Menelaou C, Herz LM, Schenning APHJ. Dichroic perylene bisimide triad displaying energy transfer in switchable luminescent solar concentrators. Chem Mater [Internet]. 2014 Jul 8;26(13):3876–8. Available from: <URL>.
  • 30. Szukalska A, Szukalski A, Stachera J, Zajac D, Chrzumnicka E, Martynski T, et al. Perylene-based chromophore as a versatile dye for light amplification. Materials (Basel) [Internet]. 2022 Jan 27;15(3):980. Available from: <URL>.
  • 31. Liu Y, Wang K, Guo D, Jiang B. Supramolecular assembly of perylene bisimide with β‐cyclodextrin grafts as a solid‐state fluorescence sensor for vapor detection. Adv Funct Mater [Internet]. 2009 Jul 24;19(14):2230–5. Available from: <URL>.
  • 32. Yang N, Song S, Ren J, Liu C, Li Z, Qi H, et al. Controlled aggregation of a perylene-derived probe for near-infrared fluorescence imaging and phototherapy. ACS Appl Bio Mater [Internet]. 2021 Jun 21;4(6):5008–15. Available from: <URL>.
  • 33. Guner T, Aksoy E, Demir MM, Varlikli C. Perylene-embedded electrospun PS fibers for white light generation. Dye Pigment [Internet]. 2019 Jan;160:501–8. Available from: <URL>.
  • 34. Aksoy E, Danos A, Varlikli C, Monkman AP. Navigating CIE space for efficient TADF downconversion WOLEDs. Dye Pigment [Internet]. 2020 Dec;183:108707. Available from: <URL>.
  • 35. Zhang B, Lyskov I, Wilson LJ, Sabatini RP, Manian A, Soleimaninejad H, et al. FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation. J Mater Chem C [Internet]. 2020;8(26):8953–61. Available from: <URL>.
  • 36. Kozma E, Mróz W, Villafiorita-Monteleone F, Galeotti F, Andicsová-Eckstein A, Catellani M, et al. Perylene diimide derivatives as red and deep red-emitters for fully solution processable OLEDs. RSC Adv [Internet]. 2016;6(66):61175–9. Available from: <URL>.
  • 37. Aksoy E, Danos A, Li C, Monkman A, Varlıklı C. The Effect of imide substituents on the excited state properties of perylene diimide derivatives. Turkish J Sci Technol [Internet]. 2022 Mar 20;17(1):11–21. Available from: <URL>.
  • 38. Aksoy E, Danos A, Li C, Monkman AP, Varlikli C. Silylethynyl substitution for preventing aggregate formation in perylene diimides. J Phys Chem C [Internet]. 2021 Jun 17;125(23):13041–9. Available from: <URL>.
  • 39. Davis NJLK, MacQueen RW, Roberts DA, Danos A, Dehn S, Perrier S, et al. Energy transfer in pendant perylene diimide copolymers. J Mater Chem C [Internet]. 2016;4(35):8270–5. Available from: <URL>.
  • 40. de Sousa FDB. The role of plastic concerning the sustainable development goals: The literature point of view. Clean Responsible Consum [Internet]. 2021 Dec;3:100020. Available from: <URL>.
  • 41. Benning S, Kitzerow HS, Bock H, Achard MF. Fluorescent columnar liquid crystalline 3,4,9,10-tetra-(n-alkoxycarbonyl)-perylenes. Liq Cryst [Internet]. 2000 Jul;27(7):901–6. Available from: <URL>.
  • 42. Aksoy E, Bozkus V, Varlikli C. Tuning the colour of solution processed perylene tetraester based OLEDs from yellowish-green to greenish-white: A molecular engineering approach. Dye Pigment [Internet]. 2023 Mar;211:111050. Available from: <URL>.
  • 43. Hashem M, Rez MF, Fouad H, Elsarnagawy T, Elsharawy M, Umar A, et al. Influence of titanium oxide nanoparticles on the physical and thermomechanical behavior of poly methyl methacrylate (PMMA): A Denture Base Resin. Sci Adv Mater [Internet]. 2017 Jun 1;9(6):938–44. Available from: <URL>.
  • 44. Piosik E, Synak A, Paluszkiewicz J, Martyński T. Concentration dependent evolution of aggregates formed by chlorinated and non-chlorinated perylene tetracarboxylic acid esters in pure spin-coated films and in a PMMA matrix. J Lumin [Internet]. 2019 Feb;206:132–45. Available from: <URL>.
There are 44 citations in total.

Details

Primary Language English
Subjects Optical Properties of Materials, Organic Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Erkan Aksoy 0000-0002-0083-2574

Early Pub Date July 25, 2024
Publication Date August 30, 2024
Submission Date December 30, 2023
Acceptance Date June 21, 2024
Published in Issue Year 2024

Cite

Vancouver Aksoy E. Recycling of Waste Polymethyl-Methacrylate as an Optical Transparent Host. JOTCSA. 2024;11(3):1141-50.