Research Article
BibTex RIS Cite

Evaluation of Structural and Dielectric Properties of Eu3+, B3+ co-doped Ba2GdMO6 (M=Nb, Ta) Double Perovskite Ceramics

Year 2024, , 1099 - 1110, 30.08.2024
https://doi.org/10.18596/jotcsa.1444484

Abstract

In the study, the structural and dielectric properties of Ba2GdMO6 (M=Nb, Ta) double perovskite ceramics produced with solid-state method were examined by co-doping xEu3+ and yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70 and 100 mol%). XRD (X-ray diffraction) results of the ceramic samples exhibited a single-phase structure with cubic symmetry Fm-3m space group, while increasing B3+ concentration led to an increase in crystallite sizes and lattice parameters up to 50 mol% in both series. SEM (scanning electron microscopy) examinations revealed the presence of boron-supported grain growth and agglomeration in the grains of both series, and also a slight angularity occurred in grain shape at high B3+ concentrations. The dielectric constant (ε') of the ceramic samples in both series increased with increasing boron concentration up to 50 mol%, and it was approximately 33.5 and 35.4 at 20 Hz for the Ba2Gd1-xNbO6:xEu3+, yB3+ and Ba2Gd1-xTaO6:xEu3+, yB3+, respectively. The decrease in the dielectric constant after 50 mol% may be attributed to the presence of increased strain in the structure, as shown by the decrease in crystallite size. The increasing B3+ concentration caused a decrease in dielectric loss (tan δ) in both series, which was attributed to the suppression of oxygen vacancies due to the increased presence of B3+ and hence to a decrease in ionic conductivity and dielectric loss.

References

  • 1. Luo Y, Chen Y, Li L, Chen J, Pang T, Chen L, et al. Three-mode fluorescence thermometers based on double perovskite Ba2GdNbO6:Eu3+,Mn4+ phosphors. Ceram Int [Internet]. 2023 Dec;49(23):38007–14. Available from: <URL>.
  • 2. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6:Eu3+ for WLEDs. Optik (Stuttg) [Internet]. 2020 Jan;201:163536. Available from: <URL>.
  • 3. Sun Q, Wang S, Devakumar B, Sun L, Liang J, Huang X. Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6 :Mn4+ Phosphors. ACS Omega [Internet]. 2019 Aug 20;4(8):13474–80. Available from: <URL>.
  • 4. Han B, Zhu J, Chu C, Yang X, Wang Y, Li K, et al. Sm3+-Mn4+ activated Sr2GdTaO6 red phosphor for plant growth lighting and optical temperature sensing. Sensors Actuators A Phys [Internet]. 2023 Jan;349:114089. Available from: <URL>.
  • 5. Sun J, Sun Z, Li Y, Jin Z, Ma L, Lu R, et al. Realization of plant growth lighting and temperature detecting based on novel Bi3+, Sm3+ and Mn4+ doped Ca2GdNbO6 double perovskite phosphors. Opt Mater (Amst) [Internet]. 2023 Nov;145:114394. Available from: <URL>.
  • 6. Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, et al. Concentration- and temperature- dependent luminescence quenching and optical transition of Sr2GdTaO6: Eu3+ phosphor for potential applications in white LEDs. Results Phys [Internet]. 2024 Jan;56:107238. Available from: <URL>.
  • 7. Han Y jie, Wang S, Liu H, Shi L, Zhang J ying, Zhang Z ni, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6:Mn4+ for indoor plant growth lighting. J Lumin [Internet]. 2020 Apr;220:116968. Available from: <URL>.
  • 8. Ranjbar B, Pavan A, Kennedy BJ, Zhang Z. Structural and magnetic properties of the ruthenium double perovskites Ba2−xSrxYRuO6. Dalt Trans [Internet]. 2015;44(23):10689–99. Available from: <URL>. 9. Shimizu Y, Sakagami S, Goto K, Nakachi Y, Ueda K. Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides. Mater Sci Eng B [Internet]. 2009 Apr;161(1–3):100–3. Available from: <URL>.
  • 10. Wang S, Sun Q, Devakumar B, Liang J, Sun L, Huang X. Novel highly efficient and thermally stable Ca2GdTaO6:Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J Alloys Compd [Internet]. 2019 Oct;804:93–9. Available from: <URL>.
  • 11. Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J. Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M=Sb, Nb, Ta) with distorted coordination environment. J Solid State Chem [Internet]. 2011 Dec;184(12):3324–8. Available from: <URL>.
  • 12. Chen J, Zhao S, Zhao Z, Liao M, Pan S, Feng J, et al. The structure and luminescence properties of blue–green-emitting Sr2YNbO6: Bi3+ phosphors. J Lumin [Internet]. 2021 Nov;239:118336. Available from: <URL>.
  • 13. Baral SC, Maneesha P, Rini EG, Sen S. Recent advances in LaNiMnO double perovskites for various applications; challenges and opportunities. Prog Solid State Chem [Internet]. 2023 Dec;72:100429. Available from: <URL>.
  • 14. Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, et al. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Mater Horizons [Internet]. 2022;9(9):2450–9. Available from: <URL>.
  • 15. Mishra S, Choudhary RNP, Parida SK. A multifunctional transition metal based double perovskite Ba2(FeW)O6: Structural, microstructural, optical, electrical and ferroelectric properties. Ceram Int [Internet]. 2023 Jul;49(14):22702–17. Available from: <URL>.
  • 16. Parida BN, Panda N, Padhee R, Parida RK. Ferroelectric and optical behavior of Pb0.5Ba1.5BiNbO6 double perovskite. Ferroelectrics [Internet]. 2019 Feb 17;540(1):18–28. Available from: <URL>.
  • 17. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 18. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 19. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 20. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys B Condens Matter [Internet]. 2020 May;585:412106. Available from: <URL>.
  • 21. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 21;26(5):1671–8. Available from: <URL>.
  • 22. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 20;26(5):1637–43. Available from: <URL>.
  • 23. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB‐type PbTa2O6 :Eu3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 30;14(6):1144–50. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 25. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 26. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 27. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 28. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 29. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12 Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 32. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 33. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 34. Koshy J, Thomas JK, Kurian J, Yadava YP, Damodaran AD. Development and characterization of GdBa2NbO6, a new ceramic substrate for YBCO thick films. Mater Lett [Internet]. 1993 Oct;17(6):393–7. Available from: <URL>.
  • 35. Babu TGN, Koshy J. Ba2GdTaO6, a ceramic substrate for YBa2Cu3O7−gd films. Mater Lett [Internet]. 1997 Nov;33(1–2):7–11. Available from: <URL>.
  • 36. Tahar RBH, Tahar NBH. Boron-doped zinc oxide thin films prepared by sol-gel technique. J Mater Sci [Internet]. 2005 Oct;40(19):5285–9. Available from: <URL>.
  • 37. Addonizio ML, Diletto C. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Sol Energy Mater Sol Cells [Internet]. 2008 Nov;92(11):1488–94. Available from: <URL>.
  • 38. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 39. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 40. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M = Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 41. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 42. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 43. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3(0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 46. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 47. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 48. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 49. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 50. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 51. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 52. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 53. Caruntu G, Rarig Jr R, Dumitru I, O’Connor CJ. Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1−xSrxTiO3(0<x<1) powders synthesized through an oxalate-complex precursor. J Mater Chem [Internet]. 2006;16(8):752–8. Available from: <URL>.
  • 54. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 55. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 56. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 57. Iqbal MJ, Yaqub N, Sepiol B, Ismail B. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater Res Bull [Internet]. 2011 Nov;46(11):1837–42. Available from: <URL>.
  • 58. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 59. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 60. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 61. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 62. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
Year 2024, , 1099 - 1110, 30.08.2024
https://doi.org/10.18596/jotcsa.1444484

Abstract

References

  • 1. Luo Y, Chen Y, Li L, Chen J, Pang T, Chen L, et al. Three-mode fluorescence thermometers based on double perovskite Ba2GdNbO6:Eu3+,Mn4+ phosphors. Ceram Int [Internet]. 2023 Dec;49(23):38007–14. Available from: <URL>.
  • 2. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6:Eu3+ for WLEDs. Optik (Stuttg) [Internet]. 2020 Jan;201:163536. Available from: <URL>.
  • 3. Sun Q, Wang S, Devakumar B, Sun L, Liang J, Huang X. Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6 :Mn4+ Phosphors. ACS Omega [Internet]. 2019 Aug 20;4(8):13474–80. Available from: <URL>.
  • 4. Han B, Zhu J, Chu C, Yang X, Wang Y, Li K, et al. Sm3+-Mn4+ activated Sr2GdTaO6 red phosphor for plant growth lighting and optical temperature sensing. Sensors Actuators A Phys [Internet]. 2023 Jan;349:114089. Available from: <URL>.
  • 5. Sun J, Sun Z, Li Y, Jin Z, Ma L, Lu R, et al. Realization of plant growth lighting and temperature detecting based on novel Bi3+, Sm3+ and Mn4+ doped Ca2GdNbO6 double perovskite phosphors. Opt Mater (Amst) [Internet]. 2023 Nov;145:114394. Available from: <URL>.
  • 6. Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, et al. Concentration- and temperature- dependent luminescence quenching and optical transition of Sr2GdTaO6: Eu3+ phosphor for potential applications in white LEDs. Results Phys [Internet]. 2024 Jan;56:107238. Available from: <URL>.
  • 7. Han Y jie, Wang S, Liu H, Shi L, Zhang J ying, Zhang Z ni, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6:Mn4+ for indoor plant growth lighting. J Lumin [Internet]. 2020 Apr;220:116968. Available from: <URL>.
  • 8. Ranjbar B, Pavan A, Kennedy BJ, Zhang Z. Structural and magnetic properties of the ruthenium double perovskites Ba2−xSrxYRuO6. Dalt Trans [Internet]. 2015;44(23):10689–99. Available from: <URL>. 9. Shimizu Y, Sakagami S, Goto K, Nakachi Y, Ueda K. Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides. Mater Sci Eng B [Internet]. 2009 Apr;161(1–3):100–3. Available from: <URL>.
  • 10. Wang S, Sun Q, Devakumar B, Liang J, Sun L, Huang X. Novel highly efficient and thermally stable Ca2GdTaO6:Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J Alloys Compd [Internet]. 2019 Oct;804:93–9. Available from: <URL>.
  • 11. Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J. Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M=Sb, Nb, Ta) with distorted coordination environment. J Solid State Chem [Internet]. 2011 Dec;184(12):3324–8. Available from: <URL>.
  • 12. Chen J, Zhao S, Zhao Z, Liao M, Pan S, Feng J, et al. The structure and luminescence properties of blue–green-emitting Sr2YNbO6: Bi3+ phosphors. J Lumin [Internet]. 2021 Nov;239:118336. Available from: <URL>.
  • 13. Baral SC, Maneesha P, Rini EG, Sen S. Recent advances in LaNiMnO double perovskites for various applications; challenges and opportunities. Prog Solid State Chem [Internet]. 2023 Dec;72:100429. Available from: <URL>.
  • 14. Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, et al. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Mater Horizons [Internet]. 2022;9(9):2450–9. Available from: <URL>.
  • 15. Mishra S, Choudhary RNP, Parida SK. A multifunctional transition metal based double perovskite Ba2(FeW)O6: Structural, microstructural, optical, electrical and ferroelectric properties. Ceram Int [Internet]. 2023 Jul;49(14):22702–17. Available from: <URL>.
  • 16. Parida BN, Panda N, Padhee R, Parida RK. Ferroelectric and optical behavior of Pb0.5Ba1.5BiNbO6 double perovskite. Ferroelectrics [Internet]. 2019 Feb 17;540(1):18–28. Available from: <URL>.
  • 17. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 18. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 19. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 20. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys B Condens Matter [Internet]. 2020 May;585:412106. Available from: <URL>.
  • 21. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 21;26(5):1671–8. Available from: <URL>.
  • 22. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 20;26(5):1637–43. Available from: <URL>.
  • 23. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB‐type PbTa2O6 :Eu3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 30;14(6):1144–50. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 25. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 26. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 27. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 28. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 29. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12 Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 32. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 33. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 34. Koshy J, Thomas JK, Kurian J, Yadava YP, Damodaran AD. Development and characterization of GdBa2NbO6, a new ceramic substrate for YBCO thick films. Mater Lett [Internet]. 1993 Oct;17(6):393–7. Available from: <URL>.
  • 35. Babu TGN, Koshy J. Ba2GdTaO6, a ceramic substrate for YBa2Cu3O7−gd films. Mater Lett [Internet]. 1997 Nov;33(1–2):7–11. Available from: <URL>.
  • 36. Tahar RBH, Tahar NBH. Boron-doped zinc oxide thin films prepared by sol-gel technique. J Mater Sci [Internet]. 2005 Oct;40(19):5285–9. Available from: <URL>.
  • 37. Addonizio ML, Diletto C. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Sol Energy Mater Sol Cells [Internet]. 2008 Nov;92(11):1488–94. Available from: <URL>.
  • 38. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 39. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 40. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M = Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 41. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 42. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 43. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3(0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 46. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 47. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 48. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 49. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 50. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 51. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 52. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 53. Caruntu G, Rarig Jr R, Dumitru I, O’Connor CJ. Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1−xSrxTiO3(0<x<1) powders synthesized through an oxalate-complex precursor. J Mater Chem [Internet]. 2006;16(8):752–8. Available from: <URL>.
  • 54. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 55. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 56. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 57. Iqbal MJ, Yaqub N, Sepiol B, Ismail B. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater Res Bull [Internet]. 2011 Nov;46(11):1837–42. Available from: <URL>.
  • 58. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 59. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 60. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 61. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 62. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
There are 61 citations in total.

Details

Primary Language English
Subjects Crystallography, Inorganic Materials, Physical Properties of Materials
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Early Pub Date July 13, 2024
Publication Date August 30, 2024
Submission Date February 28, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024

Cite

Vancouver İlhan M, Güleryüz LF. Evaluation of Structural and Dielectric Properties of Eu3+, B3+ co-doped Ba2GdMO6 (M=Nb, Ta) Double Perovskite Ceramics. JOTCSA. 2024;11(3):1099-110.