Review
BibTex RIS Cite

Phase Separation Challenges in Borosilicate Nuclear Glasses and Strategies for Vitrification Improvement

Year 2025, Volume: 12 Issue: 4, 249 - 268, 01.12.2025
https://doi.org/10.18596/jotcsa.1760055

Abstract

This review highlights three main topics: advancements in vitrification technology and associated issues like melter corrosion in global facilities, the chemistry and networking of glassy and frit forms of waste, and improvements in vitrified structures that enhance the properties of glass formulations. Borosilicate glass formulations offer various technical advantages for nuclear waste management, including effective bonding with fission products and actinides, resistance to radiation, simple and safe technology, and low leaching tendencies in aqueous environments. The maximum results indicate that the vitrification facility in Tarapur, India, 43.8% waste loadings with 6.4% B2O3 in the glass composition, while Savannah River Site in the USA processes waste loadings of up to 50 wt% with 6% B2O3 in the glass composition. In the IAEA-TECDOC, it is stated that considering spent fuel borosilicate glasses are suitable matrices for the immobilising up to 13 wt % of UO2 or 6 wt % of PuO2. However, borosilicate glasses may face issues when the molybdenum ratio in the waste exceeds certain limits, potentially leading to phase separation in the vitrified network. This review covers the importance of waste management policies and provides a historical overview of nuclear waste glass in different countries.

References

  • 1. Nascimento MLF, Cassar DR, Ciolini R, Souza SO, d’Errico F. Radioactive waste immobilization using vitreous materials for facilities in a safe and resilient infrastructure classified by multivariate exploratory analyses. Infrastructures [Internet]. 2022 Sep 13;7(9):120. Available from: <URL>.
  • 2. Vernaz É, Bruezière J. History of nuclear waste glass in France. Procedia Mater Sci [Internet]. 2014 Jan 1;7:3–9. Available from: <URL>.
  • 3. Besnard M. The world nuclear waste report 2019: Focus europe. 2019.
  • 4. Gossé S, Guéneau C, Bordier S, Schuller S, Laplace A, Rogez J. A thermodynamic approach to predict the metallic and oxide phases precipitations in nuclear waste glass melts. Procedia Mater Sci [Internet]. 2014 Jan 1;7:79–86. Available from: <URL>.
  • 5. Benigni P, Rogez J, Schuller S. Experimental determination of thermodynamical quantities in oxide mixtures and glasses. Procedia Mater Sci [Internet]. 2014 Jan 1;7:138–47. Available from: <URL>.
  • 6. Hrma P, Ferkl P, Pokomy R. Modeling of glass properties and their effect on glass production rate in an electric melter. In: 3rd Summer School on nuclear and industrial glasses for energy transition (SUMGLASS 2023). 2023.
  • 7. Hrma P, Ferkl P, Pokorný R, Kruger AA. Glass production rate in an electric melter: Melting rate correlation and primary foam stability. Mater Lett [Internet]. 2024 Aug 15;369:136689. Available from: <URL>.
  • 8. Benigni P. Thermodynamic modeling of nuclear glasses and glass forming liquids. In: 3rd Summer School on nuclear and industrial glasses for energy transition (SUMGLASS 2023). 2023.
  • 9. Gossé S, Fossati P, Dupin N, Deshkar A, Schuller S. Thermodynamic models for phase separation and crystallization in nuclear glasses. In: 3rd Summer School on nuclear and industrial glasses for energy transition (SUMGLASS 2023). 2023.
  • 10. Weber WJ. Radiation and thermal ageing of nuclear waste glass. Procedia Mater Sci [Internet]. 2014 Jan 1;7:237–46. Available from: <URL>.
  • 11. Weber WJ. Effects of beta/gamma radiation on nuclear waste glasses. In: CEA/Valrho summer session Glass scientific research for high performance containment [Internet]. Mejannes-Le-Clap (France); 1997. p. 194–209. Available from: <URL>.
  • 12. Al-Mashhadani AH. Study the effect of gamma radiation on the some properties of glass and glass-ceramic immobilize nuclear waste. Iraqi J Phys [Internet]. 2019 Feb 24;11(21):75–83. Available from: <URL>.
  • 13. Kumar A, Nayak C, Rajput P, Mishra RK, Bhattacharyya D, Kaushik CP, et al. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS. Hyperfine Interact [Internet]. 2016 Dec 6;237(1):143. Available from: <URL>.
  • 14. Mir AH, Jan A, Delaye JM, Donnelly S, Hinks J, Gin S. Effect of decades of corrosion on the microstructure of altered glasses and their radiation stability. npj Mater Degrad [Internet]. 2020 Apr 15;4(1):11. Available from: <URL>.
  • 15. Sauvage E, Schuller S, Nabyl Z, Podor R, Lautru J, Benigni P, et al. Liquid feed vitrification of high-level nuclear waste: Description and modeling of chemical reactions. J Nucl Mater [Internet]. 2025 Mar 1;607:155688. Available from: <URL>.
  • 16. Xu X, Han T, Huang J, Kruger AA, Kumar A, Goel A. Machine learning enabled models to predict sulfur solubility in nuclear waste glasses. ACS Appl Mater Interfaces [Internet]. 2021 Nov 17;13(45):53375–87. Available from: <URL>.
  • 17. Vienna JD, Kim D, Muller IS, Piepel GF, Kruger AA. Toward understanding the effect of low‐activity waste glass composition on sulfur solubility. Jantzen C, editor. J Am Ceram Soc [Internet]. 2014 Oct 24;97(10):3135–42. Available from: <URL>.
  • 18. Marcial J, Riley BJ, Kruger AA, Lonergan CE, Vienna JD. Hanford low-activity waste vitrification: A review. J Hazard Mater [Internet]. 2024 Jan 5;461:132437. Available from: <URL>.
  • 19. Bouty O. Application of the empirical potential structure refinement technique to a borosilicate glass of nuclear interest. Procedia Mater Sci [Internet]. 2014 Jan 1;7:32–7. Available from: <URL>.
  • 20. Sanito RC, Bernuy-Zumaeta M, You SJ, Wang YF. A review on vitrification technologies of hazardous waste. J Environ Manage [Internet]. 2022 Aug 15;316:115243. Available from: <URL>.
  • 21. Deptuła A, Miłkowska M, Łada W, Olczak T, Wawszczak D, Smolinski T, et al. Sol-gel processing of silica nuclear waste glasses. New J Glas Ceram [Internet]. 2011;01(03):105–11. Available from: <URL>.
  • 22. Kelly SE. A joule-heated melter technology for the treatment and immobilization of low-activity waste [Internet]. Richland, WA (United States); 2011 Apr. Available from: <URL>.
  • 23. Yang Y, Wang F, Kang L, Zhou H, Wang D, Fan Z. Research progress on high-level waste vitrification based on Joule heating ceramic melter. Ann Nucl Energy [Internet]. 2025 Jun 15;216:111273. Available from: <URL>.
  • 24. Salihuddin R, Baan R, Zakaria N, others and. Radioactive waste treatment and conditioning using plasma technology pilot plant: Testing and commissioning. In: Research and Development Seminar 2016 (R&D Seminar 2016) [Internet]. Bangi (Malaysia); 2016. Available from: <URL>.
  • 25. Tzeng CC, Kuo YY, Huang TF, Lin DL, Yu YJ. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J Hazard Mater [Internet]. 1998 Feb 1;58(1–3):207–20. Available from: <URL>.
  • 26. Ojovan MI, Lee WE. An introduction to nuclear waste immobilisation [Internet]. 2nd Edition. Elsevier; 2014. Available from: <URL>.
  • 27. Manaktala HK. An assessment of borosilicate glass as a high-level waste form. San Antonio, Texas; 1992.
  • 28. Hench LL, Clark DE, Harker AB. Nuclear waste solids. J Mater Sci [Internet]. 1986 May;21(5):1457–78. Available from: <URL>.
  • 29. Kaushik CP. Indian program for vitrification of high level radioactive liquid waste. Procedia Mater Sci [Internet]. 2014 Jan 1;7:16–22. Available from: <URL>.
  • 30. Harrison MT. Vitrification of high level waste in the UK. Procedia Mater Sci [Internet]. 2014;7:10–5. Available from: <URL>.
  • 31. Thorpe CL, Neeway JJ, Pearce CI, Hand RJ, Fisher AJ, Walling SA, et al. Forty years of durability assessment of nuclear waste glass by standard methods. npj Mater Degrad [Internet]. 2021 Dec 20;5(1):61. Available from: <URL>.
  • 32. Vienna JD. Nuclear waste vitrification in the United States: Recent developments and future options. Int J Appl Glas Sci [Internet]. 2010 Sep 16;1(3):309–21. Available from: <URL>.
  • 33. Yıldız B, Erten HN, Kış M. The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. J Radioanal Nucl Chem [Internet]. 2011 May 12;288(2):475–83. Available from: <URL>.
  • 34. Pilania RK, Dube CL. Matrices for radioactive waste immobilization: A review. Front Mater [Internet]. 2023 Sep 28;10:1236470. Available from: <URL>.
  • 35. Jin T, Hall MA, Vienna JD, Eaton WC, Amoroso JW, Wiersma BJ, et al. Glass-contact refractory of the nuclear waste vitrification melters in the United States: A review of corrosion data and melter life. Int Mater Rev [Internet]. 2023 Nov 29;68(8):1135–57. Available from: <URL>.
  • 36. Guillen DP, Lee S, Hrma P, Traverso J, Pokorny R, Klouzek J, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass. J Non Cryst Solids [Internet]. 2020 Mar 1;531:119860. Available from: <URL>.
  • 37. Crum J V., Vienna JD, Riley BJ, Silverstein JA, Kissinger RM, Neeway JJ, et al. Formulation and testing of a high-tin borosilicate nuclear waste glass for in-can melting. J Nucl Mater [Internet]. 2023 Nov 1;585:154643. Available from: <URL>.
  • 38. Sakai A, Ishida S. Reflective reviews on Japanese high-level waste (HLW) vitrification – Exploring the obstacles encountered in active tests at Rokkasho. Ann Nucl Energy [Internet]. 2024 Feb 1;196:110175. Available from: <URL>.
  • 39. Kovalev N V., Prokoshin AM, Davydova P V., Korolev VA. Radiation characteristics of reactor grade platinum group metals. Nucl Energy Technol [Internet]. 2025 Mar 7;11(1):55–8. Available from: <URL>.
  • 40. Duan X, Zhang Q, Liu X, Qian Z, Zhang K, Zhu G, et al. The influence of RuO2 crystal morphology on the conductivity of glass melts during vitrification process. J Nucl Mater [Internet]. 2025 Oct 1;616:156068. Available from: <URL>.
  • 41. Vitrified high-level radioactive waste. U.S. nuclear waste technical review board, revision 1. 2017.
  • 42. Rankin WD, Wicks GG. Chemical durability of savannah river plant waste glass as a function of waste loading. J Am Ceram Soc [Internet]. 1983 Jun 2;66(6):417–20. Available from: <URL>.
  • 43. Walker DD, Wiley JR, Dukes MD, LeRoy JH. Leach rate studies on glass containing actual radioactive waste. Nucl Chem Waste Manag [Internet]. 1982 Jan 1;3(2):91–4. Available from: <URL>.
  • 44. Hossen A, Rayhan MM, Sarker MSA, Saha A, Hamrani A, McDaniel D. A systematic review on grout in nuclear waste management: Advancement, composition and performance. Nucl Eng Des [Internet]. 2025 Nov 1;443:114281. Available from: <URL>.
  • 45. Dukes MD, Mosley WC, Rankin WN, Tennant MH, Wiley JR. Multibarrier storage of savannah river plant waste. In Springer, Boston, MA; 1980. p. 231–8. Available from: <URL>.
  • 46. Crouse SH, Prasad R, Maharjan N, Ocampo VC, Woodham WH, Lambert DP, et al. Selected chemical engineering applications in nuclear-waste processing at the savannah river Site. Annu Rev Chem Biomol Eng [Internet]. 2025 Jun 9;16(1):349–70. Available from: <URL>.
  • 47. Hobbs DT, Walker DD. Chemical pretreatment of savannah river site nuclear waste. In: 204 American Chemical Society (ACS) national meeting [Internet]. Washington, DC (United States): American Chemical Society; 1992. p. 613–613. Available from: <URL>.
  • 48. Weismanl AF, Knightz JR, Mclntoshz GL, Papouchado LM. High level waste vitrification at the SRP (DWPF Summary). In: Waste Management ’88. 1988.
  • 49. Michel F, Cormier L, Lombard P, Beuneu B, Galoisy L, Calas G. Mechanisms of boron coordination change between borosilicate glasses and melts. J Non Cryst Solids [Internet]. 2013 Nov 1;379:169–76. Available from: <URL>.
  • 50. Li H, Wu L, Wang X, Xu D, Teng Y, Li Y. Crystallization behavior and microstructure of barium borosilicate glass–ceramics. Ceram Int [Internet]. 2015 Dec 1;41(10):15202–7. Available from: <URL>.
  • 51. Shelby JE. Introduction to glass science and technology. Second edition. Cambridge, UK: The Royal Society of Chemistry; 2005.
  • 52. Kashif I, Sakr EM, Soliman AA, Ratep A. Influence of SiO2 substitution for B2O3 on the properties of borosilicate glasses. Phys Chem Glas - Eur J Glas Sci Technol Part B [Internet]. 2013;54(1):35–41. Available from: <URL>.
  • 53. Lu X, Ren M, Deng L, Benmore CJ, Du J. Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations. J Nucl Mater [Internet]. 2019 Mar 1;515:284–93. Available from: <URL>.
  • 54. Magnin M. Etude Des Processus De Démixtion et De Cristallisation Au Sein De Liquides Fondus Borosilicatés Riches En Oxyde De Molybdene, Commissariat a L’énergie Atomique, Direction De L’energie Nucleaire Départment D’études Du Traitement et Du Conditionnement Dés Déchets, 2010, Rapport, CEA-R-6237 (in French)
  • 55. Caurant D, Majérus O, Fadel E, Quintas A, Gervais C, Charpentier T, et al. Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies. J Nucl Mater [Internet]. 2010 Jan 1;396(1):94–101. Available from: <URL>.
  • 56. Calas G, Le Grand M, Galoisy L, Ghaleb D. Structural role of molybdenum in nuclear glasses: An EXAFS study. J Nucl Mater [Internet]. 2003 Oct 1;322(1):15–20. Available from: <URL>.
  • 57. Krishnamurthy A, Kroeker S. Improving molybdenum and sulfur vitrification in borosilicate nuclear waste glasses using phosphorus: Structural insights from NMR. Inorg Chem [Internet]. 2022 Jan 10;61(1):73–85. Available from: <URL>.
  • 58. Schuller S, Pinet O, Penelon B. Liquid–liquid phase separation process in borosilicate liquids enriched in molybdenum and phosphorus oxides. J Am Ceram Soc [Internet]. 2011 Feb 14;94(2):447–54. Available from: <URL>.
  • 59. Sugawara T, Ohira T, Owaku K, Kanehira N, Tsukada T. CALPHAD optimization of SiO2-B2O3-Al2O3-ZnO-CaO-Na2O-Li2O-MoO3 system and their applications to high-level radioactive waste vitrification. Mater Lett [Internet]. 2025 Aug 15;393:138540. Available from: <URL>.
  • 60. Motokawa R, Kaneko K, Oba Y, Nagai T, Okamoto Y, Kobayashi T, et al. Nanoscopic structure of borosilicate glass with additives for nuclear waste vitrification. J Non Cryst Solids [Internet]. 2022 Feb 15;578:121352. Available from: <URL>.
  • 61. Maity S, Ghosh C, Srihari V, Pan S, Selvakumar J, Suneel G, et al. Fe2O3 solubility and structural investigation in simulated high-level liquid waste vitrified Na2O-TiO2-Fe2O3 -B2O3-SiO2 glass system. Ceram Int [Internet]. 2025 Aug 1;51(20):31009–20. Available from: <URL>.
  • 62. Wu L, Xiao J, Wang X, Teng Y, Li Y, Liao Q. Crystalline phase, microstructure, and aqueous stability of zirconolite–barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste. J Nucl Mater [Internet]. 2018 Jan 1;498:241–8. Available from: <URL>.
  • 63. Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, et al. Barium borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste. J Nucl Mater [Internet]. 2006 Nov 30;358(2–3):129–38. Available from: <URL>.
  • 64. Magnin M, Schuller S, Angeli F. Study of molybdenum incorporation in nuclear waste glasses: Effect of compositional variations in borosilicate glasses rich in MoO3. In: Proceedings of Global 2009 [Internet]. Paris, France; 2009. p. 9288. Available from: <URL>.
  • 65. Lonergan CE, Neeway JJ. A critical review of ion exchange in nuclear waste glasses to support the immobilized low-activity waste integrated disposal facility rate model [Internet]. Richland, WA (United States); 2017 Sep. Available from: <URL>.
  • 66. Bouty O, Delaye JM, Beuneu B, Charpentier T. Modelling borosilicate glasses of nuclear interest with the help of RMC, WAXS, neutron diffraction and 11B NMR. J Non Cryst Solids [Internet]. 2014 Oct 1;401:27–31. Available from: <URL>.
  • 67. Quintas A, Charpentier T, Majérus O, Caurant D, Dussossoy JL, Vermaut P. NMR study of a rare-earth aluminoborosilicate glass with varying CaO-to-Na2O ratio. Appl Magn Reson [Internet]. 2007 Dec;32(4):613–34. Available from: <URL>.
  • 68. El-Rehim AFA, Zahran HY, Yahia IS, Wahab EAA, Shaaban KS. Structural, elastic moduli, and radiation shielding of SiO2-TiO2-La2O3-Na2O glasses containing Y2O3. J Mater Eng Perform [Internet]. 2021 Mar 16;30(3):1872–84. Available from: <URL>.
  • 69. Singh S, Kalia G, Singh K. Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. J Mol Struct [Internet]. 2015 Apr 15;1086:239–45. Available from: <URL>.
  • 70. Al-Buriahi MS, Kırkbınar M, İbrahimoğlu E, Çalışkan F, Alrowaili ZA, Olarinoye IO, et al. Recycling of optical borosilicate waste glasses by Y2O3 doping for radiation shielding applications. Optik (Stuttg) [Internet]. 2023 Feb 1;273:170399. Available from: <URL>.
  • 71. Calas G, Galoisy L, Cormier L, Ferlat G, Lelong G. The structural properties of cations in nuclear glasses. Procedia Mater Sci [Internet]. 2014 Jan 1;7:23–31. Available from: <URL>.
  • 72. Calas G, Cormier L, Galoisy L, Jollivet P. Structure–property relationships in multicomponent oxide glasses. Comptes Rendus Chim [Internet]. 2002 Dec 1;5(12):831–43. Available from: <URL>.
  • 73. Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR. Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content. J Non Cryst Solids [Internet]. 2007 Jan 1;353(1):12–23. Available from: <URL>.
  • 74. Lu X, Sun R, Huang L, Ryan J V., Vienna JD, Du J. Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: Toward development of high crack resistant glasses for nuclear waste disposal. J Non Cryst Solids [Internet]. 2019 Jul 1;515:88–97. Available from: <URL>.
  • 75. Taurines T, Boizot B. Microstructure of powellite‐rich glass‐ceramics: A model system for high level waste immobilization. Pinckney L, editor. J Am Ceram Soc [Internet]. 2012 Mar 10;95(3):1105–11. Available from: <URL>.
  • 76. Kroeker S, Schuller S, Wren JEC, Greer BJ, Mesbah A. 133Cs and 23Na MAS NMR spectroscopy of molybdate crystallization in model nuclear glasses. Jantzen C, editor. J Am Ceram Soc [Internet]. 2016 May 3;99(5):1557–64. Available from: <URL>.
  • 77. Wu L, Li H, Wang X, Xiao J, Teng Y, Li Y. Effects of Nd content on structure and chemical durability of zirconolite–barium borosilicate glass‐ceramics. Vance E, editor. J Am Ceram Soc [Internet]. 2016 Dec 10;99(12):4093–9. Available from: <URL>.
  • 78. Chouard N, Caurant D, Majérus O, Dussossoy JL, Ledieu A, Peuget S, et al. Effect of neodymium oxide on the solubility of MoO3 in an aluminoborosilicate glass. J Non Cryst Solids [Internet]. 2011 Jul 1;357(14):2752–62. Available from: <URL>.
  • 79. Bruns S, Uesbeck T, Weil D, Möncke D, van Wüllen L, Durst K, et al. Influence of Al2O3 addition on structure and mechanical properties of borosilicate glasses. Front Mater [Internet]. 2020 Jul 28;7:525928. Available from: <URL>.
  • 80. Yang L, Zhu Y, Huo J, Cui Z, Zhang X, Dong X, et al. Solubility and valence variation of Ce in low-alkali borosilicate glass and glass network structure analysis. Materials [Internet]. 2023 Jul 18;16(14):5063. Available from: <URL>.
  • 81. Lopez C, Deschanels X, Bart JM, Boubals JM, Den Auwer C, Simoni E. Solubility of actinide surrogates in nuclear glasses. J Nucl Mater [Internet]. 2003 Jan 1;312(1):76–80. Available from: <URL>.
  • 82. Karpuz N. Effect of La2O3 on magnesium borosilicate glasses glass for radiation shielding materials in nuclear application. Radiat Phys Chem [Internet]. 2024 Jan 1;214:111305. Available from: <URL>.
  • 83. Debure M, Linard Y, Martin C, Claret F. In situ nuclear-glass corrosion under geological repository conditions. npj Mater Degrad [Internet]. 2019 Oct 31;3(1):38. Available from: <URL>.
  • 84. Lei J, Wang B, Xu L, Teng Y, Li Y, Deng H, et al. Role of Ba(NO3) pretreatment in reducing the yellow phase formation during vitrification of nuclear waste. J Nucl Mater [Internet]. 2021 Nov 1;555:153121. Available from: <URL>.
  • 85. World nuclear association, information library, nuclear generation by country, updated 6. 2024.
  • 86. IAEA (International Atomic Energy Agency). Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Vienna, Austria; 2007.
  • 87. Zubekhina BY, Burakov BE, Ojovan MI. Surface alteration of borosilicate and phosphate nuclear waste glasses by hydration and irradiation. Challenges [Internet]. 2020 Jul 23;11(2):14. Available from: <URL>.
  • 88. Malkovsky VI, Yudintsev S V., Ojovan MI, Petrov VA. The influence of radiation on confinement properties of nuclear waste glasses. Sci Technol Nucl Install [Internet]. 2020 Aug 1;2020(1):875723. Available from: <URL>.
  • 89. Tribet M, Marques C, Mougnaud S, Broudic V, Jegou C, Peuget S. Alpha dose rate and decay dose impacts on the long-term alteration of HLW nuclear glasses. npj Mater Degrad [Internet]. 2021 Jul 7;5(1):36. Available from: <URL>.
  • 90. Peuget S, Cachia JN, Jégou C, Deschanels X, Roudil D, Broudic V, et al. Irradiation stability of R7T7-type borosilicate glass. J Nucl Mater [Internet]. 2006 Aug 1;354(1–3):1–13. Available from: <URL>.
There are 90 citations in total.

Details

Primary Language English
Subjects Nuclear Chemistry
Journal Section Review
Authors

Berna Yıldız Akdağ 0009-0000-2859-5382

Submission Date August 11, 2025
Acceptance Date November 2, 2025
Publication Date December 1, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

Vancouver Yıldız Akdağ B. Phase Separation Challenges in Borosilicate Nuclear Glasses and Strategies for Vitrification Improvement. JOTCSA. 2025;12(4):249-68.