Research Article
BibTex RIS Cite
Year 2017, , 855 - 868, 17.08.2017
https://doi.org/10.18596/jotcsa.327686

Abstract

References

  • 1. Meakins J, Long CNH. Oxygen consumption, oxygen debt and lactic acid in circulatory failure. Journal of Clinical Investigation. 1927;4(2):273-93.
  • 2. Sayeed MM, Murthy PNA. ADENINE-NUCLEOTIDE AND LACTATE METABOLISM IN THE LUNG IN ENDOTOXIN-SHOCK. Circulatory Shock. 1981;8(6):657-66.
  • 3. Rassaei L, Olthuis W, Tsujimura S, Sudholter EJR, van den Berg A. Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry. 2014;406(1):123-37.
  • 4. Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchimica Acta. 2008;160(1-2):15-55.
  • 5. Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008-2013). Microchimica Acta. 2014;181(9-10):865-91.
  • 6. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, et al. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. International Journal of Epidemiology. 2010;39(6):1647-55.
  • 7. Brinkert W, Rommes JH, Bakker J. Lactate measurements in critically ill patients with a hand-held analyser. Intensive Care Medicine. 1999;25(9):966-9.
  • 8. Perez S, Sanchez S, Fabregas E. Enzymatic Strategies to Construct L-Lactate Biosensors Based on Polysulfone/Carbon Nanotubes Membranes. Electroanalysis. 2012;24(4):967-74.
  • 9. Uzunoglu A, Stanciu L. Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Analytica Chimica Acta. 2016;909:121-8.
  • 10. Uzunoglu A, Ramirez I, Andreasen E, Stanciu LA. Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchimica Acta. 2016;183(5):1667-75.
  • 11. Ibupoto ZH, Shah S, Khun K, Willander M. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase. Sensors. 2012;12(3):2456-66.
  • 12. Uzunoglu A, Scherbarth AD, Stanciu L. Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors2015; 220:[968-76 pp.].
  • 13. Xing L, Yang F, Rasouli S, Qiu Y, Li ZF, Uzunoglu A, et al. Understanding Pt Nanoparticle Anchoring on Graphene Supports through Surface Functionalization. Acs Catalysis. 2016;6(4):2642-53.
  • 14. Xin L, Yang F, Qiu Y, Uzunoglu A, Rockward T, Borup RL, et al. Polybenzimidazole (PBI) Functionalized Nanographene as Highly Stable Catalyst Support for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Journal of the Electrochemical Society. 2016;163(10):F1228-F36.
  • 15. Yang F, Xin L, Uzunoglu A, Qiu Y, Stanciu L, Ilaysky J, et al. Investigation of the Interaction between Nafion lonomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. Acs Applied Materials & Interfaces. 2017;9(7):6530-8.
  • 16. Uzunoglu A, Ahsen AS, Dundar F, Ata A, Ozturk O. Structural, electronic, and electrochemical analyses of sputter-coated Pt and Pt-Co/GCE electrodes with ultra-low metal loadings for PEM fuel cell applications. Journal of Applied Electrochemistry. 2017;47(2):139-55.
  • 17. Karimi A, Othman A, Uzunoglu A, Stanciu L, Andreescu S. Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale. 2015;7(16):6909-23.
  • 18. Albelda JAV, Uzunoglu A, Santos GNC, Stanciu LA. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors & Bioelectronics. 2017;89:518-24.
  • 19. Bas SZ. Gold nanoparticle functionalized graphene oxide modified platinum electrode for hydrogen peroxide and glucose sensing. Materials Letters. 2015;150:20-3.
  • 20. Uzunoglu A, Siyi SY, Stanciu LA. A Sensitive Electrochemical H2O2 Sensor Based on PdAg-Decorated Reduced Graphene Oxide Nanocomposites. Journal of the Electrochemical Society. 2016;163(7):B379-B84.
  • 21. Wang J. Nanoparticle-Based Electrochemical DNA Detection. Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics. 2005;1:369-84.
  • 22. Siangproh W, Dungchai W, Rattanarat P, Chailapakul O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta. 2011;690(1):10-25.
  • 23. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering. 1996;38(4):439-520.
  • 24. Uzunoglu A, Zhang H, Andreescu S, Stanciu S. CeO2–MOx (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity Journal of Materials Science: Springer; 2015. p. 3750-62.
  • 25. Ibrahim H, Temerk Y. A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sensors and Actuators B-Chemical. 2016;232:125-37.
  • 26. Lavanya N, Sekar C, Murugan R, Ravi G. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Materials Science & Engineering C-Materials for Biological Applications. 2016;65:278-86.
  • 27. Ensafi AA, Noroozi R, Zandi-Atashbar N, Rezaei B. Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sensors and Actuators B-Chemical. 2017;245:980-7.
  • 28. Sun LF, Ding YY, Jiang YL, Liu QY. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors and Actuators B-Chemical. 2017;239:848-56.
  • 29. Zanini VIP, Tulli F, Martino DM, de Mishima BL, Borsarelli CD. Improvement of the amperometric response to L-lactate by using a cationic bioinspired thymine polycation in a bioelectrode with immobilized lactate oxidase. Sensors and Actuators B-Chemical. 2013;181:251-8.
  • 30. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T. Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: Elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Analytical Chemistry. 1998;70(4):811-7.
  • 31. Briones M, Casero E, Petit-Dominguez MD, Ruiz MA, Parra-Alframba AM, Pariente F, et al. Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosensors and Bioelectronics. 2015;68:521-8.
  • 32. Gamero M, Pariente F, Lorenzo E, Alonso C. Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosensors & Bioelectronics. 2010;25(9):2038-44.
  • 33. Zhao Y, Fang X, Gu Y, Yan X, Kang Z, Zheng X, et al. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced L-lactate sensing. Colloids and Surfaces B: Biointerfaces. 2015;126:476-80.
  • 34. Zhao YG, Yan XQ, Kang Z, Fang XF, Zheng X, Zhao LQ, et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. Journal of Nanoparticle Research. 2014;16(5):9.
  • 35. Zhao Y, Yan X, Kang Z, Fang X, Zheng X, Zhao L, et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. Journal of Nanoparticle Research. 2014;16:2398.

The Use of CeO2-TiO2 Nanocomposites as Enzyme Immobilization Platforms in Electrochemical Sensors

Year 2017, , 855 - 868, 17.08.2017
https://doi.org/10.18596/jotcsa.327686

Abstract

The use of metal oxide-based nanoparticles plays a key role in the
development of electrochemical sensors with superior properties such as high
sensitivity, wide linear range, low limit of detection, and long storage
stability. In this work, we aimed to synthesize CeO2-TiO2
mixed metal oxide nanoparticles which were used as substrate materials for the
immobilization of biorecognition element for the construction of enzyme-based
electrochemical sensors. For this purpose, in the first part of the study, CeO2-TiO2
nanoparticles were prepared via a low temperature co-precipitation method and
characterized using X-ray Diffraction (XRD), N2-adsorption, and
Transmission Electron Microscopy (TEM) methods. The XRD results confirmed the
successful synthesis of CeO2-TiO2 mixed metal oxide
nanoparticles with the average crystalline size of 8.51 nm. The calculated crystalline
size value was compatible with that obtained from the TEM images. The N2
adsorption results revealed a large surface area of 78.6 cm2 g-1
which is essential for the construction of electrochemical sensors with
improved performance. The electrochemical sensors were developed by the
deposition of nanoparticles on the surface of a Pt electrode, followed by the
immobilization of lactate oxide enzyme. The electrochemical performance of the
sensors was evaluated by cyclic voltammetry (CV) and chronoamperometry methods.
The constructed sensors showed a sensitivity of 0.085 ± 0.008 µA µM-1
cm-2 (n=5) with a high reproducibility (RSD % = 1.3) and a wide
linear range (0.02-0.6 mM).  In addition,
the detection limit towards lactate was found be 5.9 µM. The results indicated
that the use of CeO2-TiO2 nanoparticles used as a
modifier on the surface of the Pt electrode enabled the construction of
electrochemical lactate sensors with high sensitivity.

References

  • 1. Meakins J, Long CNH. Oxygen consumption, oxygen debt and lactic acid in circulatory failure. Journal of Clinical Investigation. 1927;4(2):273-93.
  • 2. Sayeed MM, Murthy PNA. ADENINE-NUCLEOTIDE AND LACTATE METABOLISM IN THE LUNG IN ENDOTOXIN-SHOCK. Circulatory Shock. 1981;8(6):657-66.
  • 3. Rassaei L, Olthuis W, Tsujimura S, Sudholter EJR, van den Berg A. Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry. 2014;406(1):123-37.
  • 4. Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchimica Acta. 2008;160(1-2):15-55.
  • 5. Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008-2013). Microchimica Acta. 2014;181(9-10):865-91.
  • 6. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, et al. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. International Journal of Epidemiology. 2010;39(6):1647-55.
  • 7. Brinkert W, Rommes JH, Bakker J. Lactate measurements in critically ill patients with a hand-held analyser. Intensive Care Medicine. 1999;25(9):966-9.
  • 8. Perez S, Sanchez S, Fabregas E. Enzymatic Strategies to Construct L-Lactate Biosensors Based on Polysulfone/Carbon Nanotubes Membranes. Electroanalysis. 2012;24(4):967-74.
  • 9. Uzunoglu A, Stanciu L. Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Analytica Chimica Acta. 2016;909:121-8.
  • 10. Uzunoglu A, Ramirez I, Andreasen E, Stanciu LA. Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchimica Acta. 2016;183(5):1667-75.
  • 11. Ibupoto ZH, Shah S, Khun K, Willander M. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase. Sensors. 2012;12(3):2456-66.
  • 12. Uzunoglu A, Scherbarth AD, Stanciu L. Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors2015; 220:[968-76 pp.].
  • 13. Xing L, Yang F, Rasouli S, Qiu Y, Li ZF, Uzunoglu A, et al. Understanding Pt Nanoparticle Anchoring on Graphene Supports through Surface Functionalization. Acs Catalysis. 2016;6(4):2642-53.
  • 14. Xin L, Yang F, Qiu Y, Uzunoglu A, Rockward T, Borup RL, et al. Polybenzimidazole (PBI) Functionalized Nanographene as Highly Stable Catalyst Support for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Journal of the Electrochemical Society. 2016;163(10):F1228-F36.
  • 15. Yang F, Xin L, Uzunoglu A, Qiu Y, Stanciu L, Ilaysky J, et al. Investigation of the Interaction between Nafion lonomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. Acs Applied Materials & Interfaces. 2017;9(7):6530-8.
  • 16. Uzunoglu A, Ahsen AS, Dundar F, Ata A, Ozturk O. Structural, electronic, and electrochemical analyses of sputter-coated Pt and Pt-Co/GCE electrodes with ultra-low metal loadings for PEM fuel cell applications. Journal of Applied Electrochemistry. 2017;47(2):139-55.
  • 17. Karimi A, Othman A, Uzunoglu A, Stanciu L, Andreescu S. Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale. 2015;7(16):6909-23.
  • 18. Albelda JAV, Uzunoglu A, Santos GNC, Stanciu LA. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors & Bioelectronics. 2017;89:518-24.
  • 19. Bas SZ. Gold nanoparticle functionalized graphene oxide modified platinum electrode for hydrogen peroxide and glucose sensing. Materials Letters. 2015;150:20-3.
  • 20. Uzunoglu A, Siyi SY, Stanciu LA. A Sensitive Electrochemical H2O2 Sensor Based on PdAg-Decorated Reduced Graphene Oxide Nanocomposites. Journal of the Electrochemical Society. 2016;163(7):B379-B84.
  • 21. Wang J. Nanoparticle-Based Electrochemical DNA Detection. Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics. 2005;1:369-84.
  • 22. Siangproh W, Dungchai W, Rattanarat P, Chailapakul O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta. 2011;690(1):10-25.
  • 23. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering. 1996;38(4):439-520.
  • 24. Uzunoglu A, Zhang H, Andreescu S, Stanciu S. CeO2–MOx (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity Journal of Materials Science: Springer; 2015. p. 3750-62.
  • 25. Ibrahim H, Temerk Y. A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sensors and Actuators B-Chemical. 2016;232:125-37.
  • 26. Lavanya N, Sekar C, Murugan R, Ravi G. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Materials Science & Engineering C-Materials for Biological Applications. 2016;65:278-86.
  • 27. Ensafi AA, Noroozi R, Zandi-Atashbar N, Rezaei B. Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sensors and Actuators B-Chemical. 2017;245:980-7.
  • 28. Sun LF, Ding YY, Jiang YL, Liu QY. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors and Actuators B-Chemical. 2017;239:848-56.
  • 29. Zanini VIP, Tulli F, Martino DM, de Mishima BL, Borsarelli CD. Improvement of the amperometric response to L-lactate by using a cationic bioinspired thymine polycation in a bioelectrode with immobilized lactate oxidase. Sensors and Actuators B-Chemical. 2013;181:251-8.
  • 30. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T. Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: Elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Analytical Chemistry. 1998;70(4):811-7.
  • 31. Briones M, Casero E, Petit-Dominguez MD, Ruiz MA, Parra-Alframba AM, Pariente F, et al. Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosensors and Bioelectronics. 2015;68:521-8.
  • 32. Gamero M, Pariente F, Lorenzo E, Alonso C. Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosensors & Bioelectronics. 2010;25(9):2038-44.
  • 33. Zhao Y, Fang X, Gu Y, Yan X, Kang Z, Zheng X, et al. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced L-lactate sensing. Colloids and Surfaces B: Biointerfaces. 2015;126:476-80.
  • 34. Zhao YG, Yan XQ, Kang Z, Fang XF, Zheng X, Zhao LQ, et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. Journal of Nanoparticle Research. 2014;16(5):9.
  • 35. Zhao Y, Yan X, Kang Z, Fang X, Zheng X, Zhao L, et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. Journal of Nanoparticle Research. 2014;16:2398.
There are 35 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Aytekin Uzunoglu 0000-0002-2726-3930

Publication Date August 17, 2017
Submission Date July 10, 2017
Acceptance Date August 11, 2017
Published in Issue Year 2017

Cite

Vancouver Uzunoglu A. The Use of CeO2-TiO2 Nanocomposites as Enzyme Immobilization Platforms in Electrochemical Sensors. JOTCSA. 2017;4(3):855-68.

Cited By