Research Article
BibTex RIS Cite

Error Analysis of Absolute Rate Coefficient Extrapolated Under Pseudo-First Order Conditions

Year 2018, Volume: 5 Issue: 1, 29 - 40, 01.09.2017
https://doi.org/10.18596/jotcsa.333857

Abstract

Computer
based simulations for the three-body recombination reaction of nitrogen (II) oxide
with the hydroxyl radical have been used to estimate the error associated with
the pseudo-first orderapproximation
under different simulated conditions. For the absolute rate coefficients
calculated by dividing the pseudo-first
order constant by the concentration of the reactant in excess, the analysis of
the relative error associated with working under pseudo-first order conditions shows that for a reactiants’ ratio
higher than 10, the relative error is less than 5%.

References

  • 1. Pettine M, D’ottone L, Campanella L, Millero FJ, Passino R. The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim Cosmochim Acta. 1998;62(9):1509–1519.
  • 2. Di Loreto G, d’Ottone L. Kinetics of the OH initiated oxidation of nitrogen monoxide. Ann Chim. 2004;94(12):899–910.
  • 3. Kiss V, Ősz K. Double Exponential Evaluation under Non-Pseudo–First-Order Conditions: A Mixed Second-Order Process Followed by a First-Order Reaction. Int J Chem Kinet. 2017 Aug 1;49(8):602–10.
  • 4. Sicilio F, Peterson MD. Ratio errors in pseudo first order reactions. J Chem Educ. 1961 Nov;38(11):576.
  • 5. O’Ferrall RAM, Miller SI. Letters to the editor. J Chem Educ. 1963 May 1;40(5):269.
  • 6. Corbett JF. Pseudo first-order kinetics. J Chem Educ. 1972 Oct 1;49(10):663.
  • 7. Rawn D. Fundamental Chemical Principles. Towston, MD; 2008.
  • 8. Atkins PW. Paula J de 2006 Physical Chemistry. Oxford: Oxford University.
  • 9. Schnell S, Mendoza C. The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys Chem. 2004 Feb 1;107(2):165–74.
  • 10. Pedersen MG, Bersani AM. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J Math Biol. 2010 Feb;60(2):267–83.
  • 11. Edelson D. Computer Simulation in Chemical Kinetics. Science. 1981;214(4524):981–6.
  • 12. Belov AA, Kalitkin NN, Kuzmina LV. Modeling of chemical kinetics in gases. Math Models Comput Simul. 2017 Jan 1;9(1):24–39.
  • 13. Barshop BA, Wrenn RF, Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM--a flexible, portable system. Anal Biochem. 1983 Apr 1;130(1):134–45.
  • 14. Jamal A, others. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications. Orbital- Electron J Chem. 2010;2(2):168–179.
  • 15. Lindemann FA, Arrhenius S, Langmuir I, Dhar NR, Perrin J, Lewis WM. Discussion on “the radiation theory of chemical action.” Trans Faraday Soc. 1922;17:598–606.
  • 16. Sander SP, Friedl RR, Golden DM, Kurylo MJ, Moortgat GK, Wine PH, et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15 [Internet]. 2006 Jul. Available from: https://ntrs.nasa.gov/search.jsp?R=20090033862
  • 17. Microcal Origin [Internet]. Northampton, MA: OriginLab; Available from: www.originlab.com
  • 18. D’Ottone L, Campuzano-Jost P, Bauer D, Hynes AJ. A Pulsed Laser Photolysis−Pulsed Laser Induced Fluorescence Study of the Kinetics of the Gas-Phase Reaction of OH with NO2. J Phys Chem A. 2001 Nov 1;105(46):10538–43.
Year 2018, Volume: 5 Issue: 1, 29 - 40, 01.09.2017
https://doi.org/10.18596/jotcsa.333857

Abstract

References

  • 1. Pettine M, D’ottone L, Campanella L, Millero FJ, Passino R. The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim Cosmochim Acta. 1998;62(9):1509–1519.
  • 2. Di Loreto G, d’Ottone L. Kinetics of the OH initiated oxidation of nitrogen monoxide. Ann Chim. 2004;94(12):899–910.
  • 3. Kiss V, Ősz K. Double Exponential Evaluation under Non-Pseudo–First-Order Conditions: A Mixed Second-Order Process Followed by a First-Order Reaction. Int J Chem Kinet. 2017 Aug 1;49(8):602–10.
  • 4. Sicilio F, Peterson MD. Ratio errors in pseudo first order reactions. J Chem Educ. 1961 Nov;38(11):576.
  • 5. O’Ferrall RAM, Miller SI. Letters to the editor. J Chem Educ. 1963 May 1;40(5):269.
  • 6. Corbett JF. Pseudo first-order kinetics. J Chem Educ. 1972 Oct 1;49(10):663.
  • 7. Rawn D. Fundamental Chemical Principles. Towston, MD; 2008.
  • 8. Atkins PW. Paula J de 2006 Physical Chemistry. Oxford: Oxford University.
  • 9. Schnell S, Mendoza C. The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys Chem. 2004 Feb 1;107(2):165–74.
  • 10. Pedersen MG, Bersani AM. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J Math Biol. 2010 Feb;60(2):267–83.
  • 11. Edelson D. Computer Simulation in Chemical Kinetics. Science. 1981;214(4524):981–6.
  • 12. Belov AA, Kalitkin NN, Kuzmina LV. Modeling of chemical kinetics in gases. Math Models Comput Simul. 2017 Jan 1;9(1):24–39.
  • 13. Barshop BA, Wrenn RF, Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM--a flexible, portable system. Anal Biochem. 1983 Apr 1;130(1):134–45.
  • 14. Jamal A, others. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications. Orbital- Electron J Chem. 2010;2(2):168–179.
  • 15. Lindemann FA, Arrhenius S, Langmuir I, Dhar NR, Perrin J, Lewis WM. Discussion on “the radiation theory of chemical action.” Trans Faraday Soc. 1922;17:598–606.
  • 16. Sander SP, Friedl RR, Golden DM, Kurylo MJ, Moortgat GK, Wine PH, et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15 [Internet]. 2006 Jul. Available from: https://ntrs.nasa.gov/search.jsp?R=20090033862
  • 17. Microcal Origin [Internet]. Northampton, MA: OriginLab; Available from: www.originlab.com
  • 18. D’Ottone L, Campuzano-Jost P, Bauer D, Hynes AJ. A Pulsed Laser Photolysis−Pulsed Laser Induced Fluorescence Study of the Kinetics of the Gas-Phase Reaction of OH with NO2. J Phys Chem A. 2001 Nov 1;105(46):10538–43.
There are 18 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Luca Dottone

Enunuwe Ochonogor This is me

Publication Date September 1, 2017
Submission Date August 10, 2017
Acceptance Date October 25, 2017
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

Vancouver Dottone L, Ochonogor E. Error Analysis of Absolute Rate Coefficient Extrapolated Under Pseudo-First Order Conditions. JOTCSA. 2017;5(1):29-40.