Research Article
BibTex RIS Cite

The Photochemical Degradation (PCD) of Nitrobenzene (NB) using UV Light and Fenton Reagent Under Various Conditions

Year 2018, Volume: 5 Issue: 2, 803 - 818, 01.01.2018
https://doi.org/10.18596/jotcsa.364152

Abstract

Photochemical degradation contributes
to the environmental fate of many pesticides, chemicals, and industrial waste in
surface waters. Photochemical degradation (PCD) of Nitrobenzene (NB) has
been studied using a UV light source and Fenton reagent under different
experimental conditions. The effect of concentration on PCD of NB was monitored
and recorded in the range 0.5 x10-4M to 3.0x10-4M. The
concentration of H2O2 was performed from 5.0 x10-4M
to 2.5 x10-4M and Fe(II) from 
1.0 x10-4M to 5.0 x10-4M  respectively.In terms of concentration, the
absorbance increases with increasing the concentration of the solution of NB, H2O2
and Fe(II).  The initial rate of PCD was
recorded at fixed pH 2.42 of solution. Two optimums for pH were found for PCD
of Nitrobenzene ranging from pH 2.42 to 4.20. The intermediates formed during
PCD of NB were identified, by which a mechanism was then suggested that PCD is
actually found to follow pseudo first order kinetics.

References

  • 1. Sulaiman M, Misha F. Cost benefit analysisof programs for the ultra-poor in Bangladesh. 2016; Available from: http://www.copenhagenconsensus.com/sites/default/files/sulaiman_misha_ultrapoor.pdf
  • 2. Khosla N. The ready-made garments industry in Bangladesh: A means to reducing gender-based social exclusion of women? J Int Womens Stud. 2009;11(1):289–304.
  • 3. Yunus M, Yamagata T. The garment industry in bangladesh. Exp Asia nad Africa [Internet]. 2012;1–28. Available from: papers://941fa284-6a3f-4661-b517-cb0b4edbed82/Paper/p1819
  • 4. Saha RC. Port Development Opportunities in Bangladesh. 2015;7(7):1–12.
  • 5. The World Bank. Bangladesh | Data [Internet]. Bangladesh Data. 2013. Available from: http://data.worldbank.org/country/bangladesh
  • 6. Enayetullah I, Hashmi QSI. Community Based Solid Waste Management Through Public-Private-Community Partnerships: Experience of Waste Concern in Bangladesh. 2006;1–63. Available from: www.wasteconcern.org
  • 7. Alamgir M, Ahsan A. Municipal solid waste and recovery potential : Bangladesh perspective. Iran J Environ Heal Sci Eng. 2007;4(2):67–76. 8. US EPA. US Environmental Protection Agency. US Environ Prot Agency. 2012;1:1–15.
  • 9. Harrison RM. Understanding our Environment: An Introduction to Environmental Chemistry and Pollution. 3rd ed. Royal Society of Chemistry; 1998. 71-138 p.
  • 10. Bizani E, Fytianos K, Poulios I, Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater. 2006;136(1 SPEC. ISS.):85–94. 11. Cantarella, M.; Sanz, R.; Buccheri, M. A.; Ruffino, F.; Rappazzo, G.; Scalese, S.; Impellizzeri, G.; Romano L. P. Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A Chem. 2016;321:1.
  • 12. Zhang J., Zhang X. , Dong S., Zhou Xi. DS. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J Photochem Photobiol A Chem [Internet]. 2016;325:104–10. Available from: https://doi.org/10.1016/j.jphotochem.2016.04.012
  • 13. Reutergardh LB, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and CdS photocatalysis. Chemosphere. 1997;35(3):585–96.
  • 14. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem. 2004;162(2–3):317–22.
  • 15. Chaker H, Chérif-Aouali L, Khaoulani S, Bengueddach A, Fourmentin S. Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous TiO2 catalysts. J Photochem Photobiol A Chem [Internet]. 2016;318:142–9. Available from: http://dx.doi.org/10.1016/j.jphotochem.2015.11.025
  • 16. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Vol. 77, Bioresource Technology. 2001. p. 247–55.
  • 17. The World Bank. Bangladesh - Poverty Assessment for Bangladesh : Creating Opportunities and Bridging the East-West Divide. IBRD IDA [Internet]. 2008; Available from: http://hdl.handle.net/10986/7886
  • 18. Hayes WJ, Laws ER. Handbook of pesticide toxicology. Classes of pesticides Vol 3. [Internet]. Handbook of pesticide toxicology. 1991. 1576 p. Available from: https://books.google.com.eg/books/about/Handbook_of_Pesticide_Toxicology.html?id=-8bwAAAAMAAJ&redir_esc=y
  • 19. Gooderham, N. J.; Carmicha PL. Mechanisms of Chemical Carcinogenesis: The Cancer Handbook,. Volume 2. 2007. 20. Ju K-S, Parales RE. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol Mol Biol Rev [Internet]. 2010;74(2):250–72. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.00006-10
  • 21. Agency for Toxic Substances and Disease Registry (ATSDR). US Dep Heal Hum Serv Public Heal Serv Atlanta, Ga, USA. 1990;
  • 22. Arora PK, Sasikala C, Ramana CV. Degradation of chlorinated nitroaromatic compounds. Vol. 93, Applied Microbiology and Biotechnology. 2012. p. 2265–77.
  • 23. Matsumoto M, Aiso S, Umeda Y, Arito H. Thirteen-Week Oral Toxicity of Para- and Ortho- Chloronitrobenzene in Rats and Mice. 2006;31(1):9–22.
  • 24. Serrano B, de Lasa H. Photocatalytic Degradation of Water Organic Pollutants. Kinetic Modeling and Energy Efficiency. Ind Eng Chem Res [Internet]. 1997;36(11):4705–11. Available from: http://dx.doi.org/10.1021/ie970104r
  • 25. Mumtaz MM, George JD. Toxicological profile for polycyclic aromatic hydrocarbons. US Dep Heal Hum Serv. 1996;(August):1–487.
  • 26. Pan J, Guan B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J Hazard Mater. 2010;183(1–3):341–6. 27. Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal A Chem. 2007;267(1–2):41–8. 28. Wang C, Yao J. Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Int J Photoenergy. 2010;2010:1–6. 29. Rivaton A, Mailhot B, Soulestin J, Varghese H, Gardette JL. Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane-polycarbonate. Polym Degrad Stab. 2002;75(1):17–33.
  • 30. Nohara K, Hidaka H, Pelizzetti E, Serpone N. Dependence on chemical structure of the production of NH 4 + and/or NO 3 ?3 ions during the photocatalyzed oxidation of nitrogen-containing substances at the titania/water interface. Catal Letters [Internet]. 1996;36(1–2):115–8. Available from: http://link.springer.com/10.1007/BF00807215
  • 31. Palmisano G, Loddo V, Augugliaro V, Palmisano L, Yurdakal S. Photocatalytic oxidation of nitrobenzene and phenylamine: Pathways and kinetics. AIChE J. 2007;53(4):961–8.
  • 32. Carlos L, Nichela D, Triszcz JM, Felice JI, García Einschlag FS. Nitration of nitrobenzene in Fenton’s processes. Chemosphere. 2010;80(3):340–5. 33. Piccinini P, Minero C, Vincenti M, Pelizzetti E. Photocatalytic mineralization of nitrogen-containing benzene derivatives. Elsevier Sci BV. 1997;39:187–95.
  • 34. Stasinakis AS. Use of Selected Advanced Oxidation Processes ( AOPs ) for Wastewater Treatment – a Mini Review. Glob NEST J. 2008;10(3):376–85. 35. NN Greenwood AE. Chemistry of the elements [Internet]. Vol. 4, Polyhedron. 1985. 1799-1800 p. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0277538700841807
  • 36. Cottin H, Gazeau M-C, Doussin J-F, Raulin F. An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm. J Photochem Photobiol A Chem. 2000;135(1):53–64.
  • 37. Bhatkhande DS, Pangarkar VG, Beenackers A a CM. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Res [Internet]. 2003;37:1223–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12598186
  • 38. Lin SH, Lo CC. Fenton process for treatment of desizing wastewater. Water Res. 1997;31(8):2050–6.
  • 39. Fu H, Zhu D. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ Sci Technol. 2013;47(9):4204–10.
  • 40. Dong J, Wen C, Liu D, Zhang W, Li J, Jiang H, et al. Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron. J Nanoparticle Res. 2015;17(1).
Year 2018, Volume: 5 Issue: 2, 803 - 818, 01.01.2018
https://doi.org/10.18596/jotcsa.364152

Abstract

References

  • 1. Sulaiman M, Misha F. Cost benefit analysisof programs for the ultra-poor in Bangladesh. 2016; Available from: http://www.copenhagenconsensus.com/sites/default/files/sulaiman_misha_ultrapoor.pdf
  • 2. Khosla N. The ready-made garments industry in Bangladesh: A means to reducing gender-based social exclusion of women? J Int Womens Stud. 2009;11(1):289–304.
  • 3. Yunus M, Yamagata T. The garment industry in bangladesh. Exp Asia nad Africa [Internet]. 2012;1–28. Available from: papers://941fa284-6a3f-4661-b517-cb0b4edbed82/Paper/p1819
  • 4. Saha RC. Port Development Opportunities in Bangladesh. 2015;7(7):1–12.
  • 5. The World Bank. Bangladesh | Data [Internet]. Bangladesh Data. 2013. Available from: http://data.worldbank.org/country/bangladesh
  • 6. Enayetullah I, Hashmi QSI. Community Based Solid Waste Management Through Public-Private-Community Partnerships: Experience of Waste Concern in Bangladesh. 2006;1–63. Available from: www.wasteconcern.org
  • 7. Alamgir M, Ahsan A. Municipal solid waste and recovery potential : Bangladesh perspective. Iran J Environ Heal Sci Eng. 2007;4(2):67–76. 8. US EPA. US Environmental Protection Agency. US Environ Prot Agency. 2012;1:1–15.
  • 9. Harrison RM. Understanding our Environment: An Introduction to Environmental Chemistry and Pollution. 3rd ed. Royal Society of Chemistry; 1998. 71-138 p.
  • 10. Bizani E, Fytianos K, Poulios I, Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater. 2006;136(1 SPEC. ISS.):85–94. 11. Cantarella, M.; Sanz, R.; Buccheri, M. A.; Ruffino, F.; Rappazzo, G.; Scalese, S.; Impellizzeri, G.; Romano L. P. Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A Chem. 2016;321:1.
  • 12. Zhang J., Zhang X. , Dong S., Zhou Xi. DS. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J Photochem Photobiol A Chem [Internet]. 2016;325:104–10. Available from: https://doi.org/10.1016/j.jphotochem.2016.04.012
  • 13. Reutergardh LB, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and CdS photocatalysis. Chemosphere. 1997;35(3):585–96.
  • 14. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem. 2004;162(2–3):317–22.
  • 15. Chaker H, Chérif-Aouali L, Khaoulani S, Bengueddach A, Fourmentin S. Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous TiO2 catalysts. J Photochem Photobiol A Chem [Internet]. 2016;318:142–9. Available from: http://dx.doi.org/10.1016/j.jphotochem.2015.11.025
  • 16. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Vol. 77, Bioresource Technology. 2001. p. 247–55.
  • 17. The World Bank. Bangladesh - Poverty Assessment for Bangladesh : Creating Opportunities and Bridging the East-West Divide. IBRD IDA [Internet]. 2008; Available from: http://hdl.handle.net/10986/7886
  • 18. Hayes WJ, Laws ER. Handbook of pesticide toxicology. Classes of pesticides Vol 3. [Internet]. Handbook of pesticide toxicology. 1991. 1576 p. Available from: https://books.google.com.eg/books/about/Handbook_of_Pesticide_Toxicology.html?id=-8bwAAAAMAAJ&redir_esc=y
  • 19. Gooderham, N. J.; Carmicha PL. Mechanisms of Chemical Carcinogenesis: The Cancer Handbook,. Volume 2. 2007. 20. Ju K-S, Parales RE. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol Mol Biol Rev [Internet]. 2010;74(2):250–72. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.00006-10
  • 21. Agency for Toxic Substances and Disease Registry (ATSDR). US Dep Heal Hum Serv Public Heal Serv Atlanta, Ga, USA. 1990;
  • 22. Arora PK, Sasikala C, Ramana CV. Degradation of chlorinated nitroaromatic compounds. Vol. 93, Applied Microbiology and Biotechnology. 2012. p. 2265–77.
  • 23. Matsumoto M, Aiso S, Umeda Y, Arito H. Thirteen-Week Oral Toxicity of Para- and Ortho- Chloronitrobenzene in Rats and Mice. 2006;31(1):9–22.
  • 24. Serrano B, de Lasa H. Photocatalytic Degradation of Water Organic Pollutants. Kinetic Modeling and Energy Efficiency. Ind Eng Chem Res [Internet]. 1997;36(11):4705–11. Available from: http://dx.doi.org/10.1021/ie970104r
  • 25. Mumtaz MM, George JD. Toxicological profile for polycyclic aromatic hydrocarbons. US Dep Heal Hum Serv. 1996;(August):1–487.
  • 26. Pan J, Guan B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J Hazard Mater. 2010;183(1–3):341–6. 27. Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal A Chem. 2007;267(1–2):41–8. 28. Wang C, Yao J. Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Int J Photoenergy. 2010;2010:1–6. 29. Rivaton A, Mailhot B, Soulestin J, Varghese H, Gardette JL. Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane-polycarbonate. Polym Degrad Stab. 2002;75(1):17–33.
  • 30. Nohara K, Hidaka H, Pelizzetti E, Serpone N. Dependence on chemical structure of the production of NH 4 + and/or NO 3 ?3 ions during the photocatalyzed oxidation of nitrogen-containing substances at the titania/water interface. Catal Letters [Internet]. 1996;36(1–2):115–8. Available from: http://link.springer.com/10.1007/BF00807215
  • 31. Palmisano G, Loddo V, Augugliaro V, Palmisano L, Yurdakal S. Photocatalytic oxidation of nitrobenzene and phenylamine: Pathways and kinetics. AIChE J. 2007;53(4):961–8.
  • 32. Carlos L, Nichela D, Triszcz JM, Felice JI, García Einschlag FS. Nitration of nitrobenzene in Fenton’s processes. Chemosphere. 2010;80(3):340–5. 33. Piccinini P, Minero C, Vincenti M, Pelizzetti E. Photocatalytic mineralization of nitrogen-containing benzene derivatives. Elsevier Sci BV. 1997;39:187–95.
  • 34. Stasinakis AS. Use of Selected Advanced Oxidation Processes ( AOPs ) for Wastewater Treatment – a Mini Review. Glob NEST J. 2008;10(3):376–85. 35. NN Greenwood AE. Chemistry of the elements [Internet]. Vol. 4, Polyhedron. 1985. 1799-1800 p. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0277538700841807
  • 36. Cottin H, Gazeau M-C, Doussin J-F, Raulin F. An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm. J Photochem Photobiol A Chem. 2000;135(1):53–64.
  • 37. Bhatkhande DS, Pangarkar VG, Beenackers A a CM. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Res [Internet]. 2003;37:1223–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12598186
  • 38. Lin SH, Lo CC. Fenton process for treatment of desizing wastewater. Water Res. 1997;31(8):2050–6.
  • 39. Fu H, Zhu D. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ Sci Technol. 2013;47(9):4204–10.
  • 40. Dong J, Wen C, Liu D, Zhang W, Li J, Jiang H, et al. Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron. J Nanoparticle Res. 2015;17(1).
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Md. Boshir Ahmed This is me

Ajoy Kumer

Muhammad Islam

Tajmeri Selima Akhter Islam This is me

Publication Date January 1, 2018
Submission Date December 9, 2017
Acceptance Date May 9, 2018
Published in Issue Year 2018 Volume: 5 Issue: 2

Cite

Vancouver Ahmed MB, Kumer A, Islam M, Islam TSA. The Photochemical Degradation (PCD) of Nitrobenzene (NB) using UV Light and Fenton Reagent Under Various Conditions. JOTCSA. 2018;5(2):803-18.