Research Article
BibTex RIS Cite

Synthesis of trans-diamide derivatives from fumaryl chloride and determination of DPPH scavenging activity of synthesized molecules

Year 2020, Volume: 7 Issue: 1, 143 - 150, 15.02.2020
https://doi.org/10.18596/jotcsa.627805

Abstract


In this work, new trans-diamide derivatives were synthesized with the
reaction between fumaryl chloride and substituted anilines. After
successful synthesis of trans-amides, antioxidant activity of all
synthesized molecules was investigated via DPPH method and calculated
IC50 values. All trans-amides were characterized by 1H-NMR, 13C-NMR,
19F-NMR, GC-MS and FTIR spectroscopic techniques.


Supporting Institution

Mersin University

Project Number

BAP 2017-1-AP1-2188

Thanks

This research was supported by a grant from Mersin University (BAP 2017-1-AP1-2188). The author would like to thanks to Prof. Dr. Nermin SIMSEK KUS (Mersin University) for offering the laboratory facilities, and to Dr. Pinar KUCE CEVIK (Mersin University) for assistance with antioxidant measurement.

References

  • 1. Sathe PA, Karpe AS, Parab AA, Parade BS, Vadagaonkar KS, Chaskar AC. Tandem synthesis of aromatic amides from styrenes in water. Tetrahedron Lett. 2018 Jul;59(29):2820–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403918307639
  • 2. Srivastava V, Singh PK, Singh PP. Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Lett. 2019 Jan;60(1):40–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403918313972
  • 3. Han Q, Xiong X, Li S. An efficient, green and scale-up synthesis of amides from esters and amines catalyzed by Ru-MACHO catalyst under mild conditions. Catal Commun. 2015 Jan;58:85–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1566736714003483
  • 4. Hong G, Wu S, Zhu X, Mao D, Wang L. Peroxide-mediated direct synthesis of amides from aroyl surrogates. Tetrahedron 2016 Jan;72(3):436–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040402015302477
  • 5. Lanigan RM, Starkov P, Sheppard TD. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH 2 CF 3 ) 3. J Org Chem. 2013 May 3;78(9):4512–23. Available from: https://pubs.acs.org/doi/10.1021/jo400509n
  • 6. Ghorpade SA, Sawant DN, Sekar N. Triphenyl borate catalyzed synthesis of amides from carboxylic acids and amines. Tetrahedron 2018 Nov;74(48):6954–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040402018312365
  • 7. Cadoni R, Porcheddu A, Giacomelli G, De Luca L. One-pot synthesis of amides from aldehydes and amines via C-H bond activation. Org Lett. 2012;
  • 8. Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev. 2009;38(2):606–31. Available from: http://xlink.rsc.org/?DOI=B701677H
  • 9. Ugi I. The ?-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew Chemie Int Ed English 1962 Jan 27;1(1):8–21. Available from: http://doi.wiley.com/10.1002/anie.196200081
  • 10. Damkaci F, DeShong P. Stereoselective Synthesis of α- and β-Glycosylamide Derivatives from Glycopyranosyl Azides via Isoxazoline Intermediates. J Am Chem Soc. 2003 Apr;125(15):4408–9. Available from: https://pubs.acs.org/doi/10.1021/ja028694u
  • 11. Ribelin T, Katz CE, English DG, Smith S, Manukyan AK, Day VW, et al. Highly Stereoselective Ring Expansion Reactions Mediated by Attractive Cation-n Interactions. Angew Chemie Int Ed. 2008 Aug 4;47(33):6233–5. Available from: http://doi.wiley.com/10.1002/anie.200801591
  • 12. Fang X, Huang Y, Chen X, Lin X, Bai Z, Huang K-W, et al. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates. J Fluor Chem. 2013 Jul;151:50–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113913001413
  • 13. Politanskaya L, Petyuk M, Tretyakov E. Transformation of fluorinated 2-alkynylanilines by various catalytic systems. J Fluor Chem. 2019 Oct;109394. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113919303185
  • 14. Li X, Liu J, Li X, Liu H, Liu H, Li Y, et al. Recent advance in the synthesis of (1,1-difluoroethyl)arenes. J Fluor Chem. 2018 Dec;216:102–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113918303932
  • 15. Bursal E, Aras A, Kılıç Ö, Taslimi P, Gören AC, Gülçin İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J Food Biochem. 2019 Mar;43(3):e12776. Available from: http://doi.wiley.com/10.1111/jfbc.12776
  • 16. Güzel S, Özay Y, Kumaş M, Uzun C, Özkorkmaz EG, Yıldırım Z, et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother. 2019 Mar;111:1260–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332218362073
  • 17. Ding Y, Zhang X, Zhang D, Chen Y, Wu Z, Wang P, et al. Copper-catalyzed oxidative amidation between aldehydes and arylamines under mild conditions. Tetrahedron Lett. 2015 Feb;56(6):831–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403914021911
  • 18. Rzhevskiy SA, Ageshina AA, Chesnokov GA, Gribanov PS, Topchiy MA, Nechaev MS, et al. Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Adv. 2019;9(3):1536–40. Available from: http://xlink.rsc.org/?DOI=C8RA10040C
  • 19. Agirbas H, Kemal B, Budak F. Synthesis and structure–antibacterial activity relationship studies of 4-substituted phenyl-4,5-dihydrobenzo[f][1,4]oxazepin-3(2H)-thiones. Med Chem Res. 2011 Nov 10;20(8):1170–80. Available from: http://link.springer.com/10.1007/s00044-010-9457-4
  • 20. Yılmaz MK, Güzel B. Iminophosphine palladium(II) complexes: synthesis, characterization, and application in Heck cross-coupling reaction of aryl bromides. Appl Organomet Chem. 2014 Jul;28(7):529–36. Available from: http://doi.wiley.com/10.1002/aoc.3158
  • 21. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phyther Res. 2015 Mar;29(3):323–31. Available from: http://doi.wiley.com/10.1002/ptr.5256
Year 2020, Volume: 7 Issue: 1, 143 - 150, 15.02.2020
https://doi.org/10.18596/jotcsa.627805

Abstract

Project Number

BAP 2017-1-AP1-2188

References

  • 1. Sathe PA, Karpe AS, Parab AA, Parade BS, Vadagaonkar KS, Chaskar AC. Tandem synthesis of aromatic amides from styrenes in water. Tetrahedron Lett. 2018 Jul;59(29):2820–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403918307639
  • 2. Srivastava V, Singh PK, Singh PP. Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Lett. 2019 Jan;60(1):40–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403918313972
  • 3. Han Q, Xiong X, Li S. An efficient, green and scale-up synthesis of amides from esters and amines catalyzed by Ru-MACHO catalyst under mild conditions. Catal Commun. 2015 Jan;58:85–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1566736714003483
  • 4. Hong G, Wu S, Zhu X, Mao D, Wang L. Peroxide-mediated direct synthesis of amides from aroyl surrogates. Tetrahedron 2016 Jan;72(3):436–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040402015302477
  • 5. Lanigan RM, Starkov P, Sheppard TD. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH 2 CF 3 ) 3. J Org Chem. 2013 May 3;78(9):4512–23. Available from: https://pubs.acs.org/doi/10.1021/jo400509n
  • 6. Ghorpade SA, Sawant DN, Sekar N. Triphenyl borate catalyzed synthesis of amides from carboxylic acids and amines. Tetrahedron 2018 Nov;74(48):6954–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040402018312365
  • 7. Cadoni R, Porcheddu A, Giacomelli G, De Luca L. One-pot synthesis of amides from aldehydes and amines via C-H bond activation. Org Lett. 2012;
  • 8. Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev. 2009;38(2):606–31. Available from: http://xlink.rsc.org/?DOI=B701677H
  • 9. Ugi I. The ?-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew Chemie Int Ed English 1962 Jan 27;1(1):8–21. Available from: http://doi.wiley.com/10.1002/anie.196200081
  • 10. Damkaci F, DeShong P. Stereoselective Synthesis of α- and β-Glycosylamide Derivatives from Glycopyranosyl Azides via Isoxazoline Intermediates. J Am Chem Soc. 2003 Apr;125(15):4408–9. Available from: https://pubs.acs.org/doi/10.1021/ja028694u
  • 11. Ribelin T, Katz CE, English DG, Smith S, Manukyan AK, Day VW, et al. Highly Stereoselective Ring Expansion Reactions Mediated by Attractive Cation-n Interactions. Angew Chemie Int Ed. 2008 Aug 4;47(33):6233–5. Available from: http://doi.wiley.com/10.1002/anie.200801591
  • 12. Fang X, Huang Y, Chen X, Lin X, Bai Z, Huang K-W, et al. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates. J Fluor Chem. 2013 Jul;151:50–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113913001413
  • 13. Politanskaya L, Petyuk M, Tretyakov E. Transformation of fluorinated 2-alkynylanilines by various catalytic systems. J Fluor Chem. 2019 Oct;109394. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113919303185
  • 14. Li X, Liu J, Li X, Liu H, Liu H, Li Y, et al. Recent advance in the synthesis of (1,1-difluoroethyl)arenes. J Fluor Chem. 2018 Dec;216:102–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022113918303932
  • 15. Bursal E, Aras A, Kılıç Ö, Taslimi P, Gören AC, Gülçin İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J Food Biochem. 2019 Mar;43(3):e12776. Available from: http://doi.wiley.com/10.1111/jfbc.12776
  • 16. Güzel S, Özay Y, Kumaş M, Uzun C, Özkorkmaz EG, Yıldırım Z, et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother. 2019 Mar;111:1260–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332218362073
  • 17. Ding Y, Zhang X, Zhang D, Chen Y, Wu Z, Wang P, et al. Copper-catalyzed oxidative amidation between aldehydes and arylamines under mild conditions. Tetrahedron Lett. 2015 Feb;56(6):831–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040403914021911
  • 18. Rzhevskiy SA, Ageshina AA, Chesnokov GA, Gribanov PS, Topchiy MA, Nechaev MS, et al. Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Adv. 2019;9(3):1536–40. Available from: http://xlink.rsc.org/?DOI=C8RA10040C
  • 19. Agirbas H, Kemal B, Budak F. Synthesis and structure–antibacterial activity relationship studies of 4-substituted phenyl-4,5-dihydrobenzo[f][1,4]oxazepin-3(2H)-thiones. Med Chem Res. 2011 Nov 10;20(8):1170–80. Available from: http://link.springer.com/10.1007/s00044-010-9457-4
  • 20. Yılmaz MK, Güzel B. Iminophosphine palladium(II) complexes: synthesis, characterization, and application in Heck cross-coupling reaction of aryl bromides. Appl Organomet Chem. 2014 Jul;28(7):529–36. Available from: http://doi.wiley.com/10.1002/aoc.3158
  • 21. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phyther Res. 2015 Mar;29(3):323–31. Available from: http://doi.wiley.com/10.1002/ptr.5256
There are 21 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Articles
Authors

Özgür Yılmaz 0000-0001-9278-1091

Project Number BAP 2017-1-AP1-2188
Publication Date February 15, 2020
Submission Date October 1, 2019
Acceptance Date November 22, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Yılmaz Ö. Synthesis of trans-diamide derivatives from fumaryl chloride and determination of DPPH scavenging activity of synthesized molecules. JOTCSA. 2020;7(1):143-50.