Research Article
BibTex RIS Cite

Photoproduction of High Molecular Weight Poly (N-methylpyrrole) under Green Conditions

Year 2023, Volume: 10 Issue: 2, 443 - 452, 31.05.2023
https://doi.org/10.18596/jotcsa.1232989

Abstract

A novel and green photochemical polymerization method of N-methylpyrole is reported. Spectral and chromatographic characterizations revealed the formation of high molecular weight polymer (1436 kg/mol) having light absorption in the near-infrared region (~750 nm), high fluorescence emission in the visible region, high conductivity (0.062 S/cm) and good thermal stability. Powder X-ray diffractogram identified a totally amorphous polymer. According to cyclic voltammetry studies the polymer formed (PMPy) possess a relatively low electronic band gap (1.39 eV) which is very important for the (opto)electronic device applications of such materials.

Supporting Institution

İstanbul Teknik Üniversitesi

Thanks

Late Prof. Yusuf Yağcı

References

  • 1. K N, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances. 2021;11(10):5659-97.
  • 2. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews. 2018;118(14):6766-843.
  • 3. Prunet G, Pawula F, Fleury G, Cloutet E, Robinson AJ, Hadziioannou G, et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Materials Today Physics. 2021;18:100402.
  • 4. R. Murad A, Iraqi A, Aziz SB, N. Abdullah S, Brza MA. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers. 2020;12(11):2627.
  • 5. Heck J, Goding J, Portillo Lara R, Green R. The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomaterialia. 2022;139:259-79.
  • 6. Wu X, Fu W, Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS Applied Polymer Materials. 2022;4(7):4609-23.
  • 7. Aradilla D, Estrany F, Casellas F, Iribarren JI, Alemán C. All-polythiophene rechargeable batteries. Organic Electronics. 2014;15(1):40-6.
  • 8. Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule. 2022;6(3):647-61.
  • 9. Langer JJ, Ratajczak K, Frąckowiak E, Golczak S. Water-Induced Tuning of the Emission of Polyaniline LEDs within the NIR to Vis Range. ACS Omega. 2021;6(50):34650-60.
  • 10. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, et al. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 2016;22:422-38.
  • 11. Sengodu P. 12 - Conjugated polymers-based biosensors. In: Kumar V, Sharma K, Sehgal R, Kalia S, editors. Conjugated Polymers for Next-Generation Applications. 1: Woodhead Publishing; 2022. p. 401-46.
  • 12. Thadathil A, Pradeep H, Joshy D, Ismail YA, Periyat P. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances. 2022;3(7):2990-3022.
  • 13. Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies. 2021;32(4):1428-54.
  • 14. Tüken T, Tansuğ G, Yazıcı B, Erbil M. Poly(N-methyl pyrrole) and its copolymer with pyrrole for mild steel protection. Surface and Coatings Technology. 2007;202(1):146-54.
  • 15. Elibal F, Gumustekin S, Ozkazanc H, Ozkazanc E. Poly(N-methylpyrrole) with high antibacterial activity synthesized via interfacial polymerization method. Journal of Molecular Structure. 2021;1242:130712.
  • 16. Su W, Iroh JO. Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates. Synthetic Metals. 2000;114(3):225-34.
  • 17. Branzoi F, Mihai MA, Petrescu S. Corrosion Protection Efficacy of the Electrodeposit of Poly (N-Methyl Pyrrole-Tween20/3-Methylthiophene) Coatings on Carbon Steel in Acid Medium. Coatings. 2022;12(8):1062.
  • 18. Duran B, Bereket G. Cyclic Voltammetric Synthesis of Poly(N-methyl pyrrole) on Copper and Effects of Polymerization Parameters on Corrosion Performance. Industrial & Engineering Chemistry Research. 2012;51(14):5246-55.
  • 19. Ahmad S. Electropolymerization of poly(methyl pyrrole)/carbon nanotubes composites derived from ionic liquid. Polymer Engineering & Science. 2009;49(5):916-21.
  • 20. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry. 2001;3(4):156-64.
  • 21. Ustamehmetoğlu B, Kelleboz E. Oxidative Copolymerization of Pyrrole and N-Methyl Pyrrole. International Journal of Polymer Analysis and Characterization - Int J Polym Anal Charact. 2003;8:255-68.
  • 22. Dubitsky YA, Zhubanov BA, Maresch GG. Synthesis of polypyrroles in the presence of ferric tetrafluoroborate. Synthetic Metals. 1991;41(1):373-6.
  • 23. González-Tejera MJ, Martín G. Electrogeneration of Poly-N-Methylpyrrole Tosylate Doped Films. Electrochemical and Morphological Study. Portugaliae Electrochimica Acta. 2007;25:349-61.
  • 24. Genies EM, Syed AA. Polypyrrole and poly N-methylpyrrole — An electrochemical study in an aqueous medium. Synthetic Metals. 1984;10(1):21-30.
  • 25. Mahmoudian MR, Basirun WJ, Alias Y. Synthesis and characterization of poly(N-methylpyrrole)/TiO2 composites on steel. Applied Surface Science. 2011;257(8):3702-8.
  • 26. Kaya K, Yagci Y. Contemporary Approaches for Conventional and Light-Mediated Synthesis of Conjugated Heteroaromatic Polymers. Macromolecular Chemistry and Physics. 2021;222(24):2100334.
  • 27. Bagheri A, Jin J. Photopolymerization in 3D Printing. ACS Applied Polymer Materials. 2019;1(4):593-611.
  • 28. Zou D, Nunes SP, Vankelecom IFJ, Figoli A, Lee YM. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry. 2021;23(24):9815-43.
  • 29. Somers P, Liang Z, Johnson JE, Boudouris BW, Pan L, Xu X. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light: Science & Applications. 2021;10(1):199.
  • 30. Malik MS, Schlögl S, Wolfahrt M, Sangermano M. Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers. 2020;12(9):2146.
  • 31. Shirai M. Photoinitiated Polymerization. In: Kobayashi S, Müllen K, editors. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 1579-85.
  • 32. Sari E, Yilmaz G, Koyuncu S, Yagci Y. Photoinduced Step-Growth Polymerization of N-Ethylcarbazole. Journal of the American Chemical Society. 2018;140(40):12728-31. 33. Kaya K, Koyuncu S, Yagci Y. Photoinduced synthesis of poly(N-ethylcarbazole) from phenacylium salt without conventional catalyst and/or monomer. Chemical Communications. 2019;55(77):11531-4.
  • 34. Yagci Y, Jockusch S, Turro NJ. Mechanism of Photoinduced Step Polymerization of Thiophene by Onium Salts:  Reactions of Phenyliodinium and Diphenylsulfinium Radical Cations with Thiophene. Macromolecules. 2007;40(13):4481-5.
  • 35. Celiker T, İsci R, Kaya K, Ozturk T, Yagci Y. Photoinduced step-growth polymerization of thieno[3,4-b] thiophene derivatives. The substitution effect on the reactivity and electrochemical properties. Journal of Polymer Science. 2020;58(17):2327-34.
  • 36. Hebert DD, Naley MA, Cunningham CC, Sharp DJ, Murphy EE, Stanton V, et al. Enabling Conducting Polymer Applications: Methods for Achieving High Molecular Weight in Chemical Oxidative Polymerization in Alkyl- and Ether-Substituted Thiophenes. Materials (Basel). 2021;14(20):6146.
  • 37. Abel SB, Frontera E, Acevedo D, Barbero CA. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers. 2022;15(1):205.
  • 38. Kocaarslan A, Kaya K, Jockusch S, Yagci Y. Phenacyl Bromide as a Single-Component Photoinitiator: Photoinduced Step-Growth Polymerization of N-Methylpyrrole and N-Methylindole. Angewandte Chemie International Edition. 2022;61(36):e202208845.
  • 39. Kaya K. A green and fast method for PEDOT: Photoinduced step-growth polymerization of EDOT. Reactive and Functional Polymers. 2023;182:105464.
  • 40. Celiker T, Kaya K, Koyuncu S, Yagci Y. Polypyrenes by Photoinduced Step-Growth Polymerization. Macromolecules. 2020;53(14):5787-94.
Year 2023, Volume: 10 Issue: 2, 443 - 452, 31.05.2023
https://doi.org/10.18596/jotcsa.1232989

Abstract

References

  • 1. K N, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances. 2021;11(10):5659-97.
  • 2. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews. 2018;118(14):6766-843.
  • 3. Prunet G, Pawula F, Fleury G, Cloutet E, Robinson AJ, Hadziioannou G, et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Materials Today Physics. 2021;18:100402.
  • 4. R. Murad A, Iraqi A, Aziz SB, N. Abdullah S, Brza MA. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers. 2020;12(11):2627.
  • 5. Heck J, Goding J, Portillo Lara R, Green R. The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomaterialia. 2022;139:259-79.
  • 6. Wu X, Fu W, Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS Applied Polymer Materials. 2022;4(7):4609-23.
  • 7. Aradilla D, Estrany F, Casellas F, Iribarren JI, Alemán C. All-polythiophene rechargeable batteries. Organic Electronics. 2014;15(1):40-6.
  • 8. Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule. 2022;6(3):647-61.
  • 9. Langer JJ, Ratajczak K, Frąckowiak E, Golczak S. Water-Induced Tuning of the Emission of Polyaniline LEDs within the NIR to Vis Range. ACS Omega. 2021;6(50):34650-60.
  • 10. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, et al. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 2016;22:422-38.
  • 11. Sengodu P. 12 - Conjugated polymers-based biosensors. In: Kumar V, Sharma K, Sehgal R, Kalia S, editors. Conjugated Polymers for Next-Generation Applications. 1: Woodhead Publishing; 2022. p. 401-46.
  • 12. Thadathil A, Pradeep H, Joshy D, Ismail YA, Periyat P. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances. 2022;3(7):2990-3022.
  • 13. Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies. 2021;32(4):1428-54.
  • 14. Tüken T, Tansuğ G, Yazıcı B, Erbil M. Poly(N-methyl pyrrole) and its copolymer with pyrrole for mild steel protection. Surface and Coatings Technology. 2007;202(1):146-54.
  • 15. Elibal F, Gumustekin S, Ozkazanc H, Ozkazanc E. Poly(N-methylpyrrole) with high antibacterial activity synthesized via interfacial polymerization method. Journal of Molecular Structure. 2021;1242:130712.
  • 16. Su W, Iroh JO. Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates. Synthetic Metals. 2000;114(3):225-34.
  • 17. Branzoi F, Mihai MA, Petrescu S. Corrosion Protection Efficacy of the Electrodeposit of Poly (N-Methyl Pyrrole-Tween20/3-Methylthiophene) Coatings on Carbon Steel in Acid Medium. Coatings. 2022;12(8):1062.
  • 18. Duran B, Bereket G. Cyclic Voltammetric Synthesis of Poly(N-methyl pyrrole) on Copper and Effects of Polymerization Parameters on Corrosion Performance. Industrial & Engineering Chemistry Research. 2012;51(14):5246-55.
  • 19. Ahmad S. Electropolymerization of poly(methyl pyrrole)/carbon nanotubes composites derived from ionic liquid. Polymer Engineering & Science. 2009;49(5):916-21.
  • 20. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry. 2001;3(4):156-64.
  • 21. Ustamehmetoğlu B, Kelleboz E. Oxidative Copolymerization of Pyrrole and N-Methyl Pyrrole. International Journal of Polymer Analysis and Characterization - Int J Polym Anal Charact. 2003;8:255-68.
  • 22. Dubitsky YA, Zhubanov BA, Maresch GG. Synthesis of polypyrroles in the presence of ferric tetrafluoroborate. Synthetic Metals. 1991;41(1):373-6.
  • 23. González-Tejera MJ, Martín G. Electrogeneration of Poly-N-Methylpyrrole Tosylate Doped Films. Electrochemical and Morphological Study. Portugaliae Electrochimica Acta. 2007;25:349-61.
  • 24. Genies EM, Syed AA. Polypyrrole and poly N-methylpyrrole — An electrochemical study in an aqueous medium. Synthetic Metals. 1984;10(1):21-30.
  • 25. Mahmoudian MR, Basirun WJ, Alias Y. Synthesis and characterization of poly(N-methylpyrrole)/TiO2 composites on steel. Applied Surface Science. 2011;257(8):3702-8.
  • 26. Kaya K, Yagci Y. Contemporary Approaches for Conventional and Light-Mediated Synthesis of Conjugated Heteroaromatic Polymers. Macromolecular Chemistry and Physics. 2021;222(24):2100334.
  • 27. Bagheri A, Jin J. Photopolymerization in 3D Printing. ACS Applied Polymer Materials. 2019;1(4):593-611.
  • 28. Zou D, Nunes SP, Vankelecom IFJ, Figoli A, Lee YM. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry. 2021;23(24):9815-43.
  • 29. Somers P, Liang Z, Johnson JE, Boudouris BW, Pan L, Xu X. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light: Science & Applications. 2021;10(1):199.
  • 30. Malik MS, Schlögl S, Wolfahrt M, Sangermano M. Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers. 2020;12(9):2146.
  • 31. Shirai M. Photoinitiated Polymerization. In: Kobayashi S, Müllen K, editors. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 1579-85.
  • 32. Sari E, Yilmaz G, Koyuncu S, Yagci Y. Photoinduced Step-Growth Polymerization of N-Ethylcarbazole. Journal of the American Chemical Society. 2018;140(40):12728-31. 33. Kaya K, Koyuncu S, Yagci Y. Photoinduced synthesis of poly(N-ethylcarbazole) from phenacylium salt without conventional catalyst and/or monomer. Chemical Communications. 2019;55(77):11531-4.
  • 34. Yagci Y, Jockusch S, Turro NJ. Mechanism of Photoinduced Step Polymerization of Thiophene by Onium Salts:  Reactions of Phenyliodinium and Diphenylsulfinium Radical Cations with Thiophene. Macromolecules. 2007;40(13):4481-5.
  • 35. Celiker T, İsci R, Kaya K, Ozturk T, Yagci Y. Photoinduced step-growth polymerization of thieno[3,4-b] thiophene derivatives. The substitution effect on the reactivity and electrochemical properties. Journal of Polymer Science. 2020;58(17):2327-34.
  • 36. Hebert DD, Naley MA, Cunningham CC, Sharp DJ, Murphy EE, Stanton V, et al. Enabling Conducting Polymer Applications: Methods for Achieving High Molecular Weight in Chemical Oxidative Polymerization in Alkyl- and Ether-Substituted Thiophenes. Materials (Basel). 2021;14(20):6146.
  • 37. Abel SB, Frontera E, Acevedo D, Barbero CA. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers. 2022;15(1):205.
  • 38. Kocaarslan A, Kaya K, Jockusch S, Yagci Y. Phenacyl Bromide as a Single-Component Photoinitiator: Photoinduced Step-Growth Polymerization of N-Methylpyrrole and N-Methylindole. Angewandte Chemie International Edition. 2022;61(36):e202208845.
  • 39. Kaya K. A green and fast method for PEDOT: Photoinduced step-growth polymerization of EDOT. Reactive and Functional Polymers. 2023;182:105464.
  • 40. Celiker T, Kaya K, Koyuncu S, Yagci Y. Polypyrenes by Photoinduced Step-Growth Polymerization. Macromolecules. 2020;53(14):5787-94.
There are 39 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section RESEARCH ARTICLES
Authors

Kerem Kaya 0000-0002-5736-488X

Publication Date May 31, 2023
Submission Date January 12, 2023
Acceptance Date April 2, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

Vancouver Kaya K. Photoproduction of High Molecular Weight Poly (N-methylpyrrole) under Green Conditions. JOTCSA. 2023;10(2):443-52.