Review
BibTex RIS Cite

Surfactant Micelles as Catalysts: Kinetic Modeling and Key Models

Year 2024, Volume: 11 Issue: 3, 1165 - 1180
https://doi.org/10.18596/jotcsa.1399457

Abstract

Surfactant molecules possess both hydrophilic and hydrophobic properties, featuring a hydrophilic head and a hydrophobic tail. When surfactants reach a critical micellar concentration, they assemble into stable molecular aggregates called micelles. These micelles serve as effective catalysts for a range of chemical reactions. To elucidate and make sense of experimental data related to micelle-catalyzed reactions, researchers often employ kinetic modeling as a valuable tool. Several kinetic models have been introduced to describe the reaction rates within micellar environments. In this discussion, we will provide a concise overview of four widely utilized models: The Berezin model, the pseudophase model, the ion exchange model, and the Piskiewicz model.

References

  • 1. Kaatze U. Kinetics of Micelle Formation and Concentration Fluctuations in Solutions of Short-Chain Surfactants. J Phys Chem B [Internet]. 2011 Sep 8;115(35):10470–7. Available from: <URL>.
  • 2. Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir [Internet]. 2020 Jun 2;36(21):5745–53. Available from: <URL>.
  • 3. Ghosh KK, Sinha D, Satnami ML, Dubey DK, Rodriguez-Dafonte P, Mundhara GL. Nucleophilic Dephosphorylation of p -Nitrophenyl Diphenyl Phosphate in Cationic Micellar Media. Langmuir [Internet]. 2005 Sep 1;21(19):8664–9. Available from: <URL>.
  • 4. Kolay S, Ghosh KK, MacDonald A, Moulins J, Palepu RM. Micellization of Alkyltriphenylphosphonium Bromides in Ethylene Glycol and Diethylene Glycol + Water Mixtures: Thermodynamic and Kinetic Investigation. J Solution Chem [Internet]. 2008 Jan 29;37(1):59–72. Available from: <URL>.
  • 5. Ghosh KK, Verma SK. Kinetics of α-chymotrypsin catalyzed hydrolysis of 4-nitrophenyl acetate in ethanolamine surfactants. Indian J Biochem Biophys [Internet]. 2008;45(5):350–3. Available from: <URL>.
  • 6. Ghosh KK, Verma SK. Effects of head group of cationic surfactants on the hydrolysis of p ‐nitrophenyl acetate catalyzed by α‐chymotrypsin. Int J Chem Kinet [Internet]. 2009 Jun 25;41(6):377–81. Available from: <URL>.
  • 7. Ghosh KK, Sinha D, Satnami ML, Dubey DK, Shrivastava A, Palepu RM, et al. Enhanced nucleophilic reactivity of hydroxamate ions in some novel micellar systems for the cleavage of Parathion. J Colloid Interface Sci [Internet]. 2006 Sep;301(2):564–8. Available from: <URL>.
  • 8. Saha R, Ghosh A, Saha B. Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem Eng Sci [Internet]. 2013 Aug;99:23–7. Available from: <URL>.
  • 9. Saha R, Ghosh A, Saha B. Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J Coord Chem [Internet]. 2011 Nov 10;64(21):3729–39. Available from: <URL>.
  • 10. Ghosh A, Saha R, Saha B. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J Ind Eng Chem [Internet]. 2014 Jan;20(1):345–55. Available from: <URL>.
  • 11. Saha R, Ghosh A, Sar P, Saha I, Ghosh SK, Mukherjee K, et al. Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2013 Dec;116:524–31. Available from: <URL>.
  • 12. Acharjee A, Rakshit A, Chowdhury S, Malik S, Barman MK, Ali MA, et al. Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous medium. J Mol Liq [Internet]. 2019 Mar;277:360–71. Available from: <URL>.
  • 13. Ghosh A, Saha R, Mukhejee K, Ghosh SK, Bhattacharyya SS, Laskar S, et al. Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room Temperature. Int J Chem Kinet [Internet]. 2013 Mar 22;45(3):175–86. Available from: <URL>.
  • 14. Chowdhury KM, Mandal J, Saha B. Micellar catalysis of chromium(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine in aqueous acid media. J Coord Chem [Internet]. 2009 Jun 1;62(11):1871–8. Available from: <URL>.
  • 15. Mukherjee K, Ghosh A, Saha R, Sar P, Malik S, Saha B. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Mar;122:204–8. Available from: <URL>.
  • 16. Acharjee A, Rakshit A, Chowdhury S, Ali MA, Singh B, Saha B. Mixed anionic-nonionic micelle catalysed oxidation of aliphatic alcohol in aqueous medium. J Mol Liq [Internet]. 2020 Apr;303:112655. Available from: <URL>.
  • 17. Saha R, Ghosh A, Saha B. Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Apr;124:130–7. Available from: <URL>.
  • 18. Ghosh SK, Saha R, Mukherjee K, Ghosh A, Bhattacharyya SS, Saha B. Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Propanol in Aqueous Media. J Korean Chem Soc [Internet]. 2012 Feb 20;56(1):164–8. Available from: <URL>.
  • 19. Ghosh SK, Ghosh A, Saha R, Saha B. Suitable combination of promoter and micellar catalyst for chromic acid oxidation of formaldehyde to formic acid in aqueous acid media at room temperature. Phys Chem Liq [Internet]. 2015 Jan 2;53(1):146–61. Available from: <URL>.
  • 20. Chowdhury S, Rakshit A, Acharjee A, Mahali K, Saha B. Surface phenomenon in micellar media: An excellent controlling factor for oxidation of fatty aldehyde in aqueous medium. J Mol Liq [Internet]. 2020 Jul;310:113224. Available from: <URL>.
  • 21. Chowdhury S, Rakshit A, Acharjee A, Kumar D, Saha B. Anionic micelles and their ideal binary mixture: Worth media for sustainable oxidation of hydrophobic alcohol. J Mol Liq [Internet]. 2022 Jan;346:117118. Available from: <URL>.
  • 22. Ansari TN, Xu G, Preston A, Gao P. Recent Highlights in Micellar Catalysis: An Industrial Outlook. Org Process Res Dev [Internet]. 2024 Apr 19;28(4):816–30. Available from: <URL>.
  • 23. Senchukova AS, Fetin PA, Perevyazko I, Lezov AA, Fetina VI, Vaitusionak AA, et al. Water-Soluble Copolymers of Styrene and a Surfactant Monomer in Micellar Catalysis. J Polym Res [Internet]. 2024 Mar 27;31(3):80. Available from: <URL>.
  • 24. Acharjee A, Rakshit A, Chowdhury S, Saha B. Micelle catalysed conversion of ‘on water’ reactions into ‘in water’ one. J Mol Liq [Internet]. 2021 Jan;321:114897. Available from: <URL>.
  • 25. Berezin I V, Martinek K, Yatsimirskii AK. Physicochemical Foundations of Micellar Catalysis. Russ Chem Rev [Internet]. 1973 Oct 31;42(10):787–802. Available from: <URL>.
  • 26. Osipov AP, Martinek K, Yatsimirskii AK, Berezin I V. Micellar effects in the acylation of N-substituted imidazoles by p-nitrophenyl esters of carboxylic acids. Bull Acad Sci USSR Div Chem Sci [Internet]. 1974 Sep;23(9):1905–9. Available from: <URL>.
  • 27. Martinek K, Osipov AP, Yatsimirski AK, Berezin IV. Mechanism of micellar effects in imidazole catalysis. Tetrahedron [Internet]. 1975 Jan;31(7):709–18. Available from: <URL>.
  • 28. Bunton CA, Romsted LS, Smith HJ. Quantitative treatment of micellar catalysis of reactions involving hydrogen ions. J Org Chem [Internet]. 1978 Oct 1;43(22):4299–303. Available from: <URL>.
  • 29. Bunton CA, Romsted LS, Savelli G. Tests of the pseudophase model of micellar catalysis: its partial failure. J Am Chem Soc [Internet]. 1979 Feb 1;101(5):1253–9. Available from: <URL>.
  • 30. Bunton CA, Romsted LS, Thamavit C. The pseudophase model of micellar catalysis. Addition of cyanide ion to N-alkylpyridinium ions. J Am Chem Soc [Internet]. 1980 May 1;102(11):3900–3. Available from: <URL>.
  • 31. Bunton CA, Frankson J, Romsted LS. Reaction of p-nitrophenyldiphenyl phosphate in cetyltrimethylammonium fluoride. J Phys Chem [Internet]. 1980 Oct 1;84(20):2607–11. Available from: <URL>.
  • 32. Romsted LS. A General Kinetic Theory of Rate Enhancements for Reactions between Organic Substrates and Hydrophilic Ions in Micellar Systems. In: Micellization, Solubilization, and Microemulsions [Internet]. Boston, MA: Springer US; 1977. p. 509–30. Available from: <URL>.
  • 33. Mittal KL, Lindman B. Surfactants in Solution [Internet]. Mittal KL, Lindman B, editors. Boston, MA: Springer US; 1984. Available from: <URL>.
  • 34. Mittal KL. Solution Chemistry of Surfactants [Internet]. Mittal KL, editor. Boston, MA: Springer New York; 1979. Available from: <URL>.
  • 35. Bunton CA, Romsted LS. Reactive Counterion Surfactants. In: Solution Behavior of Surfactants [Internet]. Boston, MA: Springer US; 1982. p. 975–91. Available from: <URL>.
  • 36. Piszkiewicz D. Micelle catalyzed reactions are models of enzyme catalyzed reactions which show positive homotropic interactions. J Am Chem Soc [Internet]. 1976 May 1;98(10):3053–5. Available from: <URL>.
  • 37. Piszkiewicz D. Positive cooperativity in micelle-catalyzed reactions. J Am Chem Soc [Internet]. 1977 Mar 1;99(5):1550–7. Available from: <URL>.
  • 38. Velázquez MM, García‐Mateos I, Herraez MA, Rodriguez LJ. Pseudo‐phase ion‐exchange model for micellar catalysis in the acid hydrolysis of vinyl ethers. Int J Chem Kinet [Internet]. 1984 Mar 19;16(3):269–76. Available from: <URL>.
  • 39. Menger FM, Portnoy CE. Chemistry of reactions proceeding inside molecular aggregates. J Am Chem Soc [Internet]. 1967 Aug 1;89(18):4698–703. Available from: <URL>.
  • 40. Bal S, Satnami ML, Kolay S, Palepu RM, Dafonte PR, Ghosh KK. Kinetic Studies of Micelle - Assisted Reaction of p-Nitrophenyl Acetate with Benzo-Hydroxamate Ion in Water-Ethylene Glycol Mixtures. J Surf Sci Technol [Internet]. 2007;23(1–2):33–48. Available from: <URL>.
  • 41. Rispens T, Engberts JBFN. A Kinetic Study of 1,3-Dipolar Cycloadditions in Micellar Media. J Org Chem [Internet]. 2003 Oct 1;68(22):8520–8. Available from: <URL>.
  • 42. Kumar D, Rub MA. Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants. J Mol Liq [Internet]. 2018 Jan;250:329–34. Available from: <URL>.
  • 43. Kumar D, Rub MA. Studies of interaction between ninhydrin and Gly-Leu dipeptide: Influence of cationic surfactants (m-s-m type Gemini). J Mol Liq [Internet]. 2018 Nov;269:1–7. Available from: <URL>.
  • 44. Kumar D, Rub MA. Study of the interaction between ninhydrin and chromium(III)-amino acid in an aqueous-micellar system: Influence of gemini surfactant micelles. J Mol Liq [Internet]. 2020 Mar;301:112373. Available from: <URL>.
  • 45. Kumar D, Rub MA. Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of [Zn(II)-Gly-Leu]+ and ninhydrin. J Mol Liq [Internet]. 2019 Jan;274:639–45. Available from: <URL>.
  • 46. Akram M, Kumar D, Kabir-ud-Din. Influence of cationic gemini and conventional CTAB on the interaction of [Cr(III)-Gly-Tyr]2+ complex with ninhydrin. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2013 Jul;428:92–9. Available from: <URL>.
  • 47. Kumar D, Neo KE, Rub MA, Tan ZL, Beh WL, Wong HL. Study of copper(II)–glycylphenylalanine complex with ninhydrin in aqueous and cationic CTAB micellar media: A kinetic and mechanistic approach. J Mol Liq [Internet]. 2015 Mar;203:204–9. Available from: <URL>.
  • 48. Akram M, Saeed AAM, Kabir-ud-Din. Micellar, salt, and organic solvent effects on the rate of [Cu(II)–Gly-l-Ala]+ complex–ninhydrin reaction. J Mol Liq [Internet]. 2015 Sep;209:367–73. Available from: <URL>.
  • 49. Bhattarai A, Abdul Rub M, Posa M, Saha B, Kumar D. Catalytic impacts of cationic twin headed and tailed gemini surfactants toward study of glycine and ninhydrin in sodium acetate-acetic acid buffer system. J Mol Liq [Internet]. 2022 Aug;360:119442. Available from: <URL>.
  • 50. Kumar D, Rub MA, Akram M, Kabir-ud-Din. Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and gemini (16-s-16, s=4, 5, 6) surfactant micelles. J Colloid Interface Sci [Internet]. 2014 Mar;418:324–9. Available from: <URL>.
  • 51. Alghamdi YG, Rub MA, Kumar D. Influence of twin-headed gemini micellar system on the study of methionine amino acid with ninhydrin in buffer solution. R Soc Open Sci [Internet]. 2023 Feb 15;10(2):221229. Available from: <URL>.
  • 52. Sachin KM, Karpe SA, Singh M, Bhattarai A. Study on surface properties of sodiumdodecyl sulfate and dodecyltrimethylammonium bromide mixed surfactants and their interaction with dyes. Heliyon [Internet]. 2019 Apr;5(4):e01510. Available from: <URL>.
  • 53. Kumar D, Rub MA. Study of the reaction of ninhydrin with tyrosine in gemini micellar media. RSC Adv [Internet]. 2019;9(38):22129–36. Available from: <URL>.
  • 54. Rub MA, Bhattarai A, Saha B, Jaffari ZH, Thu HT, Kumar D, et al. Effect of dicationic gemini surfactants on the rate of reaction between ninhydrin and arginine. Chem Pap [Internet]. 2022 May 20;76(5):2865–74. Available from: <URL>.
  • 55. Muñoz M, Rodríguez A, Del Mar Graciani M, Luisa Moyá M. Micellar medium effects on the hydrolysis of phenyl chloroformate in ionic, zwitterionic, nonionic, and mixed micellar solutions. Int J Chem Kinet [Internet]. 2002 Jan 28;34(7):445–51. Available from: <URL>.
  • 56. Rodríguez A, Muñoz M, Graciani M del M, Fernández Chacón S, Moyá ML. Kinetic Study in Water−Ethylene Glycol Cationic, Zwitterionic, Nonionic, and Anionic Micellar Solutions. Langmuir [Internet]. 2004 Nov 1;20(23):9945–52. Available from: <URL>.
  • 57. López-Cornejo P, Pérez P, García F, de la Vega R, Sánchez F. Use of the Pseudophase Model in the Interpretation of Reactivity under Restricted Geometry Conditions. An Application to the Study of the [Ru(NH3)5pz]2++S2O82- Electron-Transfer Reaction in Different Microheterogeneous Systems. J Am Chem Soc [Internet]. 2002 May 1;124(18):5154–64. Available from: <URL>.
  • 58. Ghosh SK, Basu A, Saha R, Ghosh A, Mukherjee K, Saha B. Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol. J Coord Chem [Internet]. 2012 Apr 10;65(7):1158–77. Available from: <URL>.
  • 59. Hassan M, AlAhmadi MD, Mosaid M. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV) in sulfuric acid medium. Arab J Chem [Internet]. 2015 Jan;8(1):72–7. Available from: <URL>.
  • 60. Ugbaga Nkole I, Ola Idris S, Abdulkadir I, David Onu A. Oxidation of aspartic acid with molybdenum-oxime-ligand framework in acidified-aqua and interfacial active media: Menger-Portnoy kinetic model. Inorg Chem Commun [Internet]. 2024 Mar;161:111979. Available from: <URL>.
  • 61. Ewais HA, Basaleh AS, Al Angari YM. Kinetic studies on the persulfate oxidation of methylene blue in the absence and presence of silver(I) as a catalyst in aqueous and micellar media. Int J Chem Kinet [Internet]. 2023 Jun 20;55(6):271–80. Available from: <URL>.
  • 62. Katre Y, Goyal N, Singh AK. Effect of CTAB Micelle on the Oxidation of L-Leucine by N-Bromophthalimide: a Kinetic Study. Zeitschrift für Phys Chemie [Internet]. 2011 Jan 1;225(1):107–24. Available from: <URL>.
  • 63. Samley B, Toosi AR. Kinetics Study of Malachite Green Fading in the Presence of TX-100, DTAB and SDS. Bull Korean Chem Soc [Internet]. 2009 Sep 20;30(9):2051–6. Available from: <URL>.
  • 64. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Application of Piszkiewicz model on the electron transfer reaction of dithionite ion and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex. Sci Rep [Internet]. 2022 Dec 22;12(1):22125. Available from: <URL>.
  • 65. Hassan M, Al-Dhoun M, Batineh Y, Najjar AA, Dahadha A, Ibrahim QA. Micellar and Polymer Catalysis in the Kinetics of Oxidation of L-lysine by Permanganate Ion in Perchloric Acid Medium. South African J Chem [Internet]. 2021;75:73–9. Available from: <URL>.
  • 66. Laguta AN, Eltsov SV. Micellar effects in kinetics of interaction of malachite green and brilliant green with water. Kharkov Univ Bull Chem Ser [Internet]. 2017;28(51):96–103. Available from: <URL>.
  • 67. Kumar Singh A, Sen N, Kumar Chatterjee S, Susan MABH. Kinetic study of oxidation of paracetamol by water-soluble colloidal MnO2 in the presence of an anionic surfactant. Colloid Polym Sci [Internet]. 2016 Oct 28;294(10):1611–22. Available from: <URL>.
  • 68. Pare B, Vijay R, Bhagwat VW, Fogliani C. Catalytic effect of pre-micellar aggregates on oxidative degradation of acridine orange by acidic chlorite. J Indian Chem Soc [Internet]. 2007;85:443–7. Available from: <URL>.
  • 69. Swain R, Panigrahi GP. Kinetics and mechanism of oxidation of hydroxylaminehydrochloride by vanadium (V) in the presence of sodium lauryl sulphate. Indian J Chem [Internet]. 2001;40(11):1191–5. Available from: <URL>.
  • 70. Yadav H, Bhoite SA, Singh AK. Kinetic and mechanistic study of micellar effect of hydrolytic reaction of Di-2-methoxy-4-nitroaniline phosphate. J Dispers Sci Technol [Internet]. 2017 Jan 2;38(1):121–31. Available from: <URL>.
  • 71. Ibrahim I, Idris SO, Abdulkadir I, Onu DA. Thioglycolic acid oxidation by N, N′-phenylenebis(salicylideneiminato)manganese(III) in DMSO/H2O: Effects of sodium dodecylsulfate and cetyltrimethylammonium bromide. Results Chem [Internet]. 2022 Jan;4:100541. Available from: <URL>.
  • 72. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Commun [Internet]. 2022 Jun;140:109468. Available from: <URL>.
  • 73. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Cationic Surfactant-Based Catalysis on the Oxidation of Glutamic Acid by Bis-(2-pyridinealdoximato)dioxomolydate(IV) Complex. Catal Letters [Internet]. 2023 Dec 17;153(12):3581–90. Available from: <URL>.
  • 74. Bunton CA. Reaction Kinetics in Aqueous Surfactant Solutions. Catal Rev [Internet]. 1979 Jan 5;20(1):1–56. Available from: <URL>.
  • 75. Romsted LS, Zanette D. Quantitative treatment of indicator equilibria in micellar solutions of sodium decyl phosphate and sodium lauryl sulfate. J Phys Chem [Internet]. 1988 Aug 1;92(16):4690–8. Available from: <URL>.
  • 76. Mohr A, Pozo Vila T, Korth H, Rehage H, Sustmann R. Hydrophobic N ‐Diazeniumdiolates and the Aqueous Interface of Sodium Dodecyl Sulfate (SDS) Micelles. ChemPhysChem [Internet]. 2008 Nov 10;9(16):2397–405. Available from: <URL>.
  • 77. Ionescu LG, Trindade VL, de Souza EF. Application of the Pseudophase Ion Exchange Model to a Micellar Catalyzed Reaction in Water−Glycerol Solutions. Langmuir [Internet]. 2000 Feb 1;16(3):988–92. Available from: <URL>.
  • 78. Armstrong C, Gotham W, Jennings P, Nikles J, Romsted LS, Versace M, et al. Acid Catalyzed Hydrolysis of Hydrophobic Ketals in Aqueous Cationic Micelles: Partial Failure of The Pseudophase Ion Exchange Model. In: Surfactants in Solution [Internet]. Boston, MA: Springer US; 1989. p. 197–209. Available from: <URL>.
  • 79. Raducan A, Olteanu A, Puiu M, Oancea D. Influence of surfactants on the fading of malachite green. Open Chem [Internet]. 2008 Mar 1;6(1):89–92. Available from: <URL>.
  • 80. Cerichelli G, Coreno M, Mancini G. Reduction of Ketones by Sodium Borohydride in the Presence of Cationic Surfactants. J Colloid Interface Sci [Internet]. 1993 Jun;158(1):33–9. Available from: <URL>.
  • 81. Ghosh SK, Basu A, Paul KK, Saha B. Micelle catalyzed oxidation of propan-2-ol to acetone by penta-valent vanadium in aqueous acid media. Mol Phys [Internet]. 2009 Apr 10;107(7):615–9. Available from: <URL>.
  • 82. Saha B, Chowdhury KM, Mandal J. Micellar Catalysis on Pentavalent Vanadium Ion Oxidation of D-Sorbitol in Aqueous Acid Media: A Kinetic Study. J Solution Chem [Internet]. 2008 Sep 10;37(9):1321–8. Available from: <URL>.
  • 83. Singh M. Mechanistic aspects of oxidation of dextrose by N-bromophthalimide in acidic medium: a micellar kinetic study. Res Chem Intermed [Internet]. 2013 Feb;39(2):469–84. Available from: <URL>.
  • 84. Subba Rao P V., Krishna GS., Ramakrishna K. Kinetics and mechanism of oxidation of tris( 2,2’-bipyridyll-cobalttll) by p-benzoquinone-Micellar effect of sodium dodecyl sulphate. Indian J Chem [Internet]. 1991;30A:136–9. Available from: <URL>.
  • 85. Yadav H, Boite SA. Hydrolysis of mono-n-ethyl-o-toluidine phosphate. Chem Rev Lett [Internet]. 2014;3(11):628–35. Available from: <URL>.
  • 86. Mohr PC, Mohr A, Vila TP, Korth HG. Localization of Hydrophobic N -Diazeniumdiolates in Aqueous Micellar Solution. Langmuir [Internet]. 2010 Aug 3;26(15):12785–93. Available from: <URL>.
  • 87. Laguta AN, Eltsov S V., Mchedlov-Petrossyan NO. Micellar rate effects on the kinetics of nitrophenol violet anion reaction with HO– ion: Comparing Piszkiewicz’s, Berezin’s, and Pseudophase Ion-Exchange models. J Mol Liq [Internet]. 2019 Mar;277:70–7. Available from: <URL>.
  • 88. Laguta AN, Eltsov S V., Mchedlov‐Petrossyan NO. Kinetics of alkaline fading of methyl violet in micellar solutions of surfactants: Comparing Piszkiewicz’s, Berezin’s, and pseudophase ion‐exchange models. Int J Chem Kinet [Internet]. 2019 Feb 14;51(2):83–94. Available from: <URL>.
  • 89. Laguta A. Quantitative analysis of micellar effect on the reaction rate of cationic triphenylmethine dyes with water according to Berezin’s model. Kharkov Univ Bull Chem Ser [Internet]. 2020;35(58):37–44. Available from: <URL>.
  • 90. Panigrahi GP, Mishra SK. Micellar-catalysis: Effect of sodium lauryl sulphate in the oxidation of lactic acid by chromic acid. J Mol Catal [Internet]. 1993 May;81(3):349–62. Available from: <URL>.
  • 91. Nkole IU, Idris SO, Onu AD, Abdulkadir I. The study of Piszkiewicz’s and Berezin’s models on the redox reaction of allylthiourea and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex in an aqueous acidic medium. Beni-Suef Univ J Basic Appl Sci [Internet]. 2022 Dec 16;11(1):68. Available from: <URL>.
  • 92. Cheong MY, Ariffin A, Niyaz Khan M. A Comparative Analysis of Pseudophase Ion-Exchange (PIE) Model and Berezin Pseudophase (BPP) Model: Analysis of Kinetic Data for Ionic Micellar-mediated Semi-ionic Bimolecular Reaction. Bull Korean Chem Soc [Internet]. 2007 Jul 20;28(7):1135–40. Available from: <URL>.
  • 93. Sar P, Ghosh A, Ghosh D, Saha B. Micellar catalysis of quinquivalent vanadium oxidation of methanol to formaldehyde in aqueous medium. Res Chem Intermed [Internet]. 2015 Aug 5;41(8):5565–86. Available from: <URL>.
  • 94. Singh M. Kinetics and Mechanism of Micellar Catalyzed Oxidation of Dextrose by N-Bromosuccinimide in H2SO4 Medium. Int J Carbohydr Chem [Internet]. 2014 Dec 1;2014:783521. Available from: <URL>.
  • 95. Turovskaya MK, Belousova IA, Razumova NG, Gaidash TS, Prokop’eva TM, Kotenko AA, et al. Reactivity of Inorganic α-Nucleophiles in Acyl Transfer in Aqueous and Micellar Media: IV. Peroxyhydrolysis of Acyl Derivatives in Organized Microheterogeneous Systems1. Russ J Org Chem [Internet]. 2024 Feb 29;60(2):252–8. Available from: <URL>.
  • 96. Layek M, Karmakar P, Pal P, Rahaman SM, Kundu S, Mitra M, et al. Influence of Chain Length and Concentration-Dependent Morphological Switching on Oxidation of Aromatic Alcohols in a Micellar Environment. Ind Eng Chem Res [Internet]. 2024 Jan 24;63(3):1334–48. Available from:<URL>.
  • 97. Albadani A, Hassan M, Obayed FA. Kinetic study of factor affecting the reaction of cyanide and picrate ions in the presence of micellar catalyst. Chem Int [Internet]. 2022;8(4):136–43. Available from: <URL>. 98. Sahu S, Kumar Padhy R, Prasad Nanda S. Surfactant catalyzed electron transfer mechanism in the oxidation of racemic tartaric acid by Ce(IV). Mater Today Proc [Internet]. 2023;78:786–91. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 1165 - 1180
https://doi.org/10.18596/jotcsa.1399457

Abstract

References

  • 1. Kaatze U. Kinetics of Micelle Formation and Concentration Fluctuations in Solutions of Short-Chain Surfactants. J Phys Chem B [Internet]. 2011 Sep 8;115(35):10470–7. Available from: <URL>.
  • 2. Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir [Internet]. 2020 Jun 2;36(21):5745–53. Available from: <URL>.
  • 3. Ghosh KK, Sinha D, Satnami ML, Dubey DK, Rodriguez-Dafonte P, Mundhara GL. Nucleophilic Dephosphorylation of p -Nitrophenyl Diphenyl Phosphate in Cationic Micellar Media. Langmuir [Internet]. 2005 Sep 1;21(19):8664–9. Available from: <URL>.
  • 4. Kolay S, Ghosh KK, MacDonald A, Moulins J, Palepu RM. Micellization of Alkyltriphenylphosphonium Bromides in Ethylene Glycol and Diethylene Glycol + Water Mixtures: Thermodynamic and Kinetic Investigation. J Solution Chem [Internet]. 2008 Jan 29;37(1):59–72. Available from: <URL>.
  • 5. Ghosh KK, Verma SK. Kinetics of α-chymotrypsin catalyzed hydrolysis of 4-nitrophenyl acetate in ethanolamine surfactants. Indian J Biochem Biophys [Internet]. 2008;45(5):350–3. Available from: <URL>.
  • 6. Ghosh KK, Verma SK. Effects of head group of cationic surfactants on the hydrolysis of p ‐nitrophenyl acetate catalyzed by α‐chymotrypsin. Int J Chem Kinet [Internet]. 2009 Jun 25;41(6):377–81. Available from: <URL>.
  • 7. Ghosh KK, Sinha D, Satnami ML, Dubey DK, Shrivastava A, Palepu RM, et al. Enhanced nucleophilic reactivity of hydroxamate ions in some novel micellar systems for the cleavage of Parathion. J Colloid Interface Sci [Internet]. 2006 Sep;301(2):564–8. Available from: <URL>.
  • 8. Saha R, Ghosh A, Saha B. Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem Eng Sci [Internet]. 2013 Aug;99:23–7. Available from: <URL>.
  • 9. Saha R, Ghosh A, Saha B. Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J Coord Chem [Internet]. 2011 Nov 10;64(21):3729–39. Available from: <URL>.
  • 10. Ghosh A, Saha R, Saha B. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J Ind Eng Chem [Internet]. 2014 Jan;20(1):345–55. Available from: <URL>.
  • 11. Saha R, Ghosh A, Sar P, Saha I, Ghosh SK, Mukherjee K, et al. Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2013 Dec;116:524–31. Available from: <URL>.
  • 12. Acharjee A, Rakshit A, Chowdhury S, Malik S, Barman MK, Ali MA, et al. Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous medium. J Mol Liq [Internet]. 2019 Mar;277:360–71. Available from: <URL>.
  • 13. Ghosh A, Saha R, Mukhejee K, Ghosh SK, Bhattacharyya SS, Laskar S, et al. Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room Temperature. Int J Chem Kinet [Internet]. 2013 Mar 22;45(3):175–86. Available from: <URL>.
  • 14. Chowdhury KM, Mandal J, Saha B. Micellar catalysis of chromium(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine in aqueous acid media. J Coord Chem [Internet]. 2009 Jun 1;62(11):1871–8. Available from: <URL>.
  • 15. Mukherjee K, Ghosh A, Saha R, Sar P, Malik S, Saha B. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Mar;122:204–8. Available from: <URL>.
  • 16. Acharjee A, Rakshit A, Chowdhury S, Ali MA, Singh B, Saha B. Mixed anionic-nonionic micelle catalysed oxidation of aliphatic alcohol in aqueous medium. J Mol Liq [Internet]. 2020 Apr;303:112655. Available from: <URL>.
  • 17. Saha R, Ghosh A, Saha B. Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Apr;124:130–7. Available from: <URL>.
  • 18. Ghosh SK, Saha R, Mukherjee K, Ghosh A, Bhattacharyya SS, Saha B. Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Propanol in Aqueous Media. J Korean Chem Soc [Internet]. 2012 Feb 20;56(1):164–8. Available from: <URL>.
  • 19. Ghosh SK, Ghosh A, Saha R, Saha B. Suitable combination of promoter and micellar catalyst for chromic acid oxidation of formaldehyde to formic acid in aqueous acid media at room temperature. Phys Chem Liq [Internet]. 2015 Jan 2;53(1):146–61. Available from: <URL>.
  • 20. Chowdhury S, Rakshit A, Acharjee A, Mahali K, Saha B. Surface phenomenon in micellar media: An excellent controlling factor for oxidation of fatty aldehyde in aqueous medium. J Mol Liq [Internet]. 2020 Jul;310:113224. Available from: <URL>.
  • 21. Chowdhury S, Rakshit A, Acharjee A, Kumar D, Saha B. Anionic micelles and their ideal binary mixture: Worth media for sustainable oxidation of hydrophobic alcohol. J Mol Liq [Internet]. 2022 Jan;346:117118. Available from: <URL>.
  • 22. Ansari TN, Xu G, Preston A, Gao P. Recent Highlights in Micellar Catalysis: An Industrial Outlook. Org Process Res Dev [Internet]. 2024 Apr 19;28(4):816–30. Available from: <URL>.
  • 23. Senchukova AS, Fetin PA, Perevyazko I, Lezov AA, Fetina VI, Vaitusionak AA, et al. Water-Soluble Copolymers of Styrene and a Surfactant Monomer in Micellar Catalysis. J Polym Res [Internet]. 2024 Mar 27;31(3):80. Available from: <URL>.
  • 24. Acharjee A, Rakshit A, Chowdhury S, Saha B. Micelle catalysed conversion of ‘on water’ reactions into ‘in water’ one. J Mol Liq [Internet]. 2021 Jan;321:114897. Available from: <URL>.
  • 25. Berezin I V, Martinek K, Yatsimirskii AK. Physicochemical Foundations of Micellar Catalysis. Russ Chem Rev [Internet]. 1973 Oct 31;42(10):787–802. Available from: <URL>.
  • 26. Osipov AP, Martinek K, Yatsimirskii AK, Berezin I V. Micellar effects in the acylation of N-substituted imidazoles by p-nitrophenyl esters of carboxylic acids. Bull Acad Sci USSR Div Chem Sci [Internet]. 1974 Sep;23(9):1905–9. Available from: <URL>.
  • 27. Martinek K, Osipov AP, Yatsimirski AK, Berezin IV. Mechanism of micellar effects in imidazole catalysis. Tetrahedron [Internet]. 1975 Jan;31(7):709–18. Available from: <URL>.
  • 28. Bunton CA, Romsted LS, Smith HJ. Quantitative treatment of micellar catalysis of reactions involving hydrogen ions. J Org Chem [Internet]. 1978 Oct 1;43(22):4299–303. Available from: <URL>.
  • 29. Bunton CA, Romsted LS, Savelli G. Tests of the pseudophase model of micellar catalysis: its partial failure. J Am Chem Soc [Internet]. 1979 Feb 1;101(5):1253–9. Available from: <URL>.
  • 30. Bunton CA, Romsted LS, Thamavit C. The pseudophase model of micellar catalysis. Addition of cyanide ion to N-alkylpyridinium ions. J Am Chem Soc [Internet]. 1980 May 1;102(11):3900–3. Available from: <URL>.
  • 31. Bunton CA, Frankson J, Romsted LS. Reaction of p-nitrophenyldiphenyl phosphate in cetyltrimethylammonium fluoride. J Phys Chem [Internet]. 1980 Oct 1;84(20):2607–11. Available from: <URL>.
  • 32. Romsted LS. A General Kinetic Theory of Rate Enhancements for Reactions between Organic Substrates and Hydrophilic Ions in Micellar Systems. In: Micellization, Solubilization, and Microemulsions [Internet]. Boston, MA: Springer US; 1977. p. 509–30. Available from: <URL>.
  • 33. Mittal KL, Lindman B. Surfactants in Solution [Internet]. Mittal KL, Lindman B, editors. Boston, MA: Springer US; 1984. Available from: <URL>.
  • 34. Mittal KL. Solution Chemistry of Surfactants [Internet]. Mittal KL, editor. Boston, MA: Springer New York; 1979. Available from: <URL>.
  • 35. Bunton CA, Romsted LS. Reactive Counterion Surfactants. In: Solution Behavior of Surfactants [Internet]. Boston, MA: Springer US; 1982. p. 975–91. Available from: <URL>.
  • 36. Piszkiewicz D. Micelle catalyzed reactions are models of enzyme catalyzed reactions which show positive homotropic interactions. J Am Chem Soc [Internet]. 1976 May 1;98(10):3053–5. Available from: <URL>.
  • 37. Piszkiewicz D. Positive cooperativity in micelle-catalyzed reactions. J Am Chem Soc [Internet]. 1977 Mar 1;99(5):1550–7. Available from: <URL>.
  • 38. Velázquez MM, García‐Mateos I, Herraez MA, Rodriguez LJ. Pseudo‐phase ion‐exchange model for micellar catalysis in the acid hydrolysis of vinyl ethers. Int J Chem Kinet [Internet]. 1984 Mar 19;16(3):269–76. Available from: <URL>.
  • 39. Menger FM, Portnoy CE. Chemistry of reactions proceeding inside molecular aggregates. J Am Chem Soc [Internet]. 1967 Aug 1;89(18):4698–703. Available from: <URL>.
  • 40. Bal S, Satnami ML, Kolay S, Palepu RM, Dafonte PR, Ghosh KK. Kinetic Studies of Micelle - Assisted Reaction of p-Nitrophenyl Acetate with Benzo-Hydroxamate Ion in Water-Ethylene Glycol Mixtures. J Surf Sci Technol [Internet]. 2007;23(1–2):33–48. Available from: <URL>.
  • 41. Rispens T, Engberts JBFN. A Kinetic Study of 1,3-Dipolar Cycloadditions in Micellar Media. J Org Chem [Internet]. 2003 Oct 1;68(22):8520–8. Available from: <URL>.
  • 42. Kumar D, Rub MA. Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants. J Mol Liq [Internet]. 2018 Jan;250:329–34. Available from: <URL>.
  • 43. Kumar D, Rub MA. Studies of interaction between ninhydrin and Gly-Leu dipeptide: Influence of cationic surfactants (m-s-m type Gemini). J Mol Liq [Internet]. 2018 Nov;269:1–7. Available from: <URL>.
  • 44. Kumar D, Rub MA. Study of the interaction between ninhydrin and chromium(III)-amino acid in an aqueous-micellar system: Influence of gemini surfactant micelles. J Mol Liq [Internet]. 2020 Mar;301:112373. Available from: <URL>.
  • 45. Kumar D, Rub MA. Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of [Zn(II)-Gly-Leu]+ and ninhydrin. J Mol Liq [Internet]. 2019 Jan;274:639–45. Available from: <URL>.
  • 46. Akram M, Kumar D, Kabir-ud-Din. Influence of cationic gemini and conventional CTAB on the interaction of [Cr(III)-Gly-Tyr]2+ complex with ninhydrin. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2013 Jul;428:92–9. Available from: <URL>.
  • 47. Kumar D, Neo KE, Rub MA, Tan ZL, Beh WL, Wong HL. Study of copper(II)–glycylphenylalanine complex with ninhydrin in aqueous and cationic CTAB micellar media: A kinetic and mechanistic approach. J Mol Liq [Internet]. 2015 Mar;203:204–9. Available from: <URL>.
  • 48. Akram M, Saeed AAM, Kabir-ud-Din. Micellar, salt, and organic solvent effects on the rate of [Cu(II)–Gly-l-Ala]+ complex–ninhydrin reaction. J Mol Liq [Internet]. 2015 Sep;209:367–73. Available from: <URL>.
  • 49. Bhattarai A, Abdul Rub M, Posa M, Saha B, Kumar D. Catalytic impacts of cationic twin headed and tailed gemini surfactants toward study of glycine and ninhydrin in sodium acetate-acetic acid buffer system. J Mol Liq [Internet]. 2022 Aug;360:119442. Available from: <URL>.
  • 50. Kumar D, Rub MA, Akram M, Kabir-ud-Din. Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and gemini (16-s-16, s=4, 5, 6) surfactant micelles. J Colloid Interface Sci [Internet]. 2014 Mar;418:324–9. Available from: <URL>.
  • 51. Alghamdi YG, Rub MA, Kumar D. Influence of twin-headed gemini micellar system on the study of methionine amino acid with ninhydrin in buffer solution. R Soc Open Sci [Internet]. 2023 Feb 15;10(2):221229. Available from: <URL>.
  • 52. Sachin KM, Karpe SA, Singh M, Bhattarai A. Study on surface properties of sodiumdodecyl sulfate and dodecyltrimethylammonium bromide mixed surfactants and their interaction with dyes. Heliyon [Internet]. 2019 Apr;5(4):e01510. Available from: <URL>.
  • 53. Kumar D, Rub MA. Study of the reaction of ninhydrin with tyrosine in gemini micellar media. RSC Adv [Internet]. 2019;9(38):22129–36. Available from: <URL>.
  • 54. Rub MA, Bhattarai A, Saha B, Jaffari ZH, Thu HT, Kumar D, et al. Effect of dicationic gemini surfactants on the rate of reaction between ninhydrin and arginine. Chem Pap [Internet]. 2022 May 20;76(5):2865–74. Available from: <URL>.
  • 55. Muñoz M, Rodríguez A, Del Mar Graciani M, Luisa Moyá M. Micellar medium effects on the hydrolysis of phenyl chloroformate in ionic, zwitterionic, nonionic, and mixed micellar solutions. Int J Chem Kinet [Internet]. 2002 Jan 28;34(7):445–51. Available from: <URL>.
  • 56. Rodríguez A, Muñoz M, Graciani M del M, Fernández Chacón S, Moyá ML. Kinetic Study in Water−Ethylene Glycol Cationic, Zwitterionic, Nonionic, and Anionic Micellar Solutions. Langmuir [Internet]. 2004 Nov 1;20(23):9945–52. Available from: <URL>.
  • 57. López-Cornejo P, Pérez P, García F, de la Vega R, Sánchez F. Use of the Pseudophase Model in the Interpretation of Reactivity under Restricted Geometry Conditions. An Application to the Study of the [Ru(NH3)5pz]2++S2O82- Electron-Transfer Reaction in Different Microheterogeneous Systems. J Am Chem Soc [Internet]. 2002 May 1;124(18):5154–64. Available from: <URL>.
  • 58. Ghosh SK, Basu A, Saha R, Ghosh A, Mukherjee K, Saha B. Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol. J Coord Chem [Internet]. 2012 Apr 10;65(7):1158–77. Available from: <URL>.
  • 59. Hassan M, AlAhmadi MD, Mosaid M. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV) in sulfuric acid medium. Arab J Chem [Internet]. 2015 Jan;8(1):72–7. Available from: <URL>.
  • 60. Ugbaga Nkole I, Ola Idris S, Abdulkadir I, David Onu A. Oxidation of aspartic acid with molybdenum-oxime-ligand framework in acidified-aqua and interfacial active media: Menger-Portnoy kinetic model. Inorg Chem Commun [Internet]. 2024 Mar;161:111979. Available from: <URL>.
  • 61. Ewais HA, Basaleh AS, Al Angari YM. Kinetic studies on the persulfate oxidation of methylene blue in the absence and presence of silver(I) as a catalyst in aqueous and micellar media. Int J Chem Kinet [Internet]. 2023 Jun 20;55(6):271–80. Available from: <URL>.
  • 62. Katre Y, Goyal N, Singh AK. Effect of CTAB Micelle on the Oxidation of L-Leucine by N-Bromophthalimide: a Kinetic Study. Zeitschrift für Phys Chemie [Internet]. 2011 Jan 1;225(1):107–24. Available from: <URL>.
  • 63. Samley B, Toosi AR. Kinetics Study of Malachite Green Fading in the Presence of TX-100, DTAB and SDS. Bull Korean Chem Soc [Internet]. 2009 Sep 20;30(9):2051–6. Available from: <URL>.
  • 64. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Application of Piszkiewicz model on the electron transfer reaction of dithionite ion and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex. Sci Rep [Internet]. 2022 Dec 22;12(1):22125. Available from: <URL>.
  • 65. Hassan M, Al-Dhoun M, Batineh Y, Najjar AA, Dahadha A, Ibrahim QA. Micellar and Polymer Catalysis in the Kinetics of Oxidation of L-lysine by Permanganate Ion in Perchloric Acid Medium. South African J Chem [Internet]. 2021;75:73–9. Available from: <URL>.
  • 66. Laguta AN, Eltsov SV. Micellar effects in kinetics of interaction of malachite green and brilliant green with water. Kharkov Univ Bull Chem Ser [Internet]. 2017;28(51):96–103. Available from: <URL>.
  • 67. Kumar Singh A, Sen N, Kumar Chatterjee S, Susan MABH. Kinetic study of oxidation of paracetamol by water-soluble colloidal MnO2 in the presence of an anionic surfactant. Colloid Polym Sci [Internet]. 2016 Oct 28;294(10):1611–22. Available from: <URL>.
  • 68. Pare B, Vijay R, Bhagwat VW, Fogliani C. Catalytic effect of pre-micellar aggregates on oxidative degradation of acridine orange by acidic chlorite. J Indian Chem Soc [Internet]. 2007;85:443–7. Available from: <URL>.
  • 69. Swain R, Panigrahi GP. Kinetics and mechanism of oxidation of hydroxylaminehydrochloride by vanadium (V) in the presence of sodium lauryl sulphate. Indian J Chem [Internet]. 2001;40(11):1191–5. Available from: <URL>.
  • 70. Yadav H, Bhoite SA, Singh AK. Kinetic and mechanistic study of micellar effect of hydrolytic reaction of Di-2-methoxy-4-nitroaniline phosphate. J Dispers Sci Technol [Internet]. 2017 Jan 2;38(1):121–31. Available from: <URL>.
  • 71. Ibrahim I, Idris SO, Abdulkadir I, Onu DA. Thioglycolic acid oxidation by N, N′-phenylenebis(salicylideneiminato)manganese(III) in DMSO/H2O: Effects of sodium dodecylsulfate and cetyltrimethylammonium bromide. Results Chem [Internet]. 2022 Jan;4:100541. Available from: <URL>.
  • 72. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Commun [Internet]. 2022 Jun;140:109468. Available from: <URL>.
  • 73. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Cationic Surfactant-Based Catalysis on the Oxidation of Glutamic Acid by Bis-(2-pyridinealdoximato)dioxomolydate(IV) Complex. Catal Letters [Internet]. 2023 Dec 17;153(12):3581–90. Available from: <URL>.
  • 74. Bunton CA. Reaction Kinetics in Aqueous Surfactant Solutions. Catal Rev [Internet]. 1979 Jan 5;20(1):1–56. Available from: <URL>.
  • 75. Romsted LS, Zanette D. Quantitative treatment of indicator equilibria in micellar solutions of sodium decyl phosphate and sodium lauryl sulfate. J Phys Chem [Internet]. 1988 Aug 1;92(16):4690–8. Available from: <URL>.
  • 76. Mohr A, Pozo Vila T, Korth H, Rehage H, Sustmann R. Hydrophobic N ‐Diazeniumdiolates and the Aqueous Interface of Sodium Dodecyl Sulfate (SDS) Micelles. ChemPhysChem [Internet]. 2008 Nov 10;9(16):2397–405. Available from: <URL>.
  • 77. Ionescu LG, Trindade VL, de Souza EF. Application of the Pseudophase Ion Exchange Model to a Micellar Catalyzed Reaction in Water−Glycerol Solutions. Langmuir [Internet]. 2000 Feb 1;16(3):988–92. Available from: <URL>.
  • 78. Armstrong C, Gotham W, Jennings P, Nikles J, Romsted LS, Versace M, et al. Acid Catalyzed Hydrolysis of Hydrophobic Ketals in Aqueous Cationic Micelles: Partial Failure of The Pseudophase Ion Exchange Model. In: Surfactants in Solution [Internet]. Boston, MA: Springer US; 1989. p. 197–209. Available from: <URL>.
  • 79. Raducan A, Olteanu A, Puiu M, Oancea D. Influence of surfactants on the fading of malachite green. Open Chem [Internet]. 2008 Mar 1;6(1):89–92. Available from: <URL>.
  • 80. Cerichelli G, Coreno M, Mancini G. Reduction of Ketones by Sodium Borohydride in the Presence of Cationic Surfactants. J Colloid Interface Sci [Internet]. 1993 Jun;158(1):33–9. Available from: <URL>.
  • 81. Ghosh SK, Basu A, Paul KK, Saha B. Micelle catalyzed oxidation of propan-2-ol to acetone by penta-valent vanadium in aqueous acid media. Mol Phys [Internet]. 2009 Apr 10;107(7):615–9. Available from: <URL>.
  • 82. Saha B, Chowdhury KM, Mandal J. Micellar Catalysis on Pentavalent Vanadium Ion Oxidation of D-Sorbitol in Aqueous Acid Media: A Kinetic Study. J Solution Chem [Internet]. 2008 Sep 10;37(9):1321–8. Available from: <URL>.
  • 83. Singh M. Mechanistic aspects of oxidation of dextrose by N-bromophthalimide in acidic medium: a micellar kinetic study. Res Chem Intermed [Internet]. 2013 Feb;39(2):469–84. Available from: <URL>.
  • 84. Subba Rao P V., Krishna GS., Ramakrishna K. Kinetics and mechanism of oxidation of tris( 2,2’-bipyridyll-cobalttll) by p-benzoquinone-Micellar effect of sodium dodecyl sulphate. Indian J Chem [Internet]. 1991;30A:136–9. Available from: <URL>.
  • 85. Yadav H, Boite SA. Hydrolysis of mono-n-ethyl-o-toluidine phosphate. Chem Rev Lett [Internet]. 2014;3(11):628–35. Available from: <URL>.
  • 86. Mohr PC, Mohr A, Vila TP, Korth HG. Localization of Hydrophobic N -Diazeniumdiolates in Aqueous Micellar Solution. Langmuir [Internet]. 2010 Aug 3;26(15):12785–93. Available from: <URL>.
  • 87. Laguta AN, Eltsov S V., Mchedlov-Petrossyan NO. Micellar rate effects on the kinetics of nitrophenol violet anion reaction with HO– ion: Comparing Piszkiewicz’s, Berezin’s, and Pseudophase Ion-Exchange models. J Mol Liq [Internet]. 2019 Mar;277:70–7. Available from: <URL>.
  • 88. Laguta AN, Eltsov S V., Mchedlov‐Petrossyan NO. Kinetics of alkaline fading of methyl violet in micellar solutions of surfactants: Comparing Piszkiewicz’s, Berezin’s, and pseudophase ion‐exchange models. Int J Chem Kinet [Internet]. 2019 Feb 14;51(2):83–94. Available from: <URL>.
  • 89. Laguta A. Quantitative analysis of micellar effect on the reaction rate of cationic triphenylmethine dyes with water according to Berezin’s model. Kharkov Univ Bull Chem Ser [Internet]. 2020;35(58):37–44. Available from: <URL>.
  • 90. Panigrahi GP, Mishra SK. Micellar-catalysis: Effect of sodium lauryl sulphate in the oxidation of lactic acid by chromic acid. J Mol Catal [Internet]. 1993 May;81(3):349–62. Available from: <URL>.
  • 91. Nkole IU, Idris SO, Onu AD, Abdulkadir I. The study of Piszkiewicz’s and Berezin’s models on the redox reaction of allylthiourea and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex in an aqueous acidic medium. Beni-Suef Univ J Basic Appl Sci [Internet]. 2022 Dec 16;11(1):68. Available from: <URL>.
  • 92. Cheong MY, Ariffin A, Niyaz Khan M. A Comparative Analysis of Pseudophase Ion-Exchange (PIE) Model and Berezin Pseudophase (BPP) Model: Analysis of Kinetic Data for Ionic Micellar-mediated Semi-ionic Bimolecular Reaction. Bull Korean Chem Soc [Internet]. 2007 Jul 20;28(7):1135–40. Available from: <URL>.
  • 93. Sar P, Ghosh A, Ghosh D, Saha B. Micellar catalysis of quinquivalent vanadium oxidation of methanol to formaldehyde in aqueous medium. Res Chem Intermed [Internet]. 2015 Aug 5;41(8):5565–86. Available from: <URL>.
  • 94. Singh M. Kinetics and Mechanism of Micellar Catalyzed Oxidation of Dextrose by N-Bromosuccinimide in H2SO4 Medium. Int J Carbohydr Chem [Internet]. 2014 Dec 1;2014:783521. Available from: <URL>.
  • 95. Turovskaya MK, Belousova IA, Razumova NG, Gaidash TS, Prokop’eva TM, Kotenko AA, et al. Reactivity of Inorganic α-Nucleophiles in Acyl Transfer in Aqueous and Micellar Media: IV. Peroxyhydrolysis of Acyl Derivatives in Organized Microheterogeneous Systems1. Russ J Org Chem [Internet]. 2024 Feb 29;60(2):252–8. Available from: <URL>.
  • 96. Layek M, Karmakar P, Pal P, Rahaman SM, Kundu S, Mitra M, et al. Influence of Chain Length and Concentration-Dependent Morphological Switching on Oxidation of Aromatic Alcohols in a Micellar Environment. Ind Eng Chem Res [Internet]. 2024 Jan 24;63(3):1334–48. Available from:<URL>.
  • 97. Albadani A, Hassan M, Obayed FA. Kinetic study of factor affecting the reaction of cyanide and picrate ions in the presence of micellar catalyst. Chem Int [Internet]. 2022;8(4):136–43. Available from: <URL>. 98. Sahu S, Kumar Padhy R, Prasad Nanda S. Surfactant catalyzed electron transfer mechanism in the oxidation of racemic tartaric acid by Ce(IV). Mater Today Proc [Internet]. 2023;78:786–91. Available from: <URL>.
There are 97 citations in total.

Details

Primary Language English
Subjects Catalysis and Mechanisms of Reactions, Reaction Kinetics and Dynamics, Physical Chemistry (Other)
Journal Section REVIEW ARTICLES
Authors

Karrı Lavanya 0000-0001-9616-1164

Srikanth Vemuri 0000-0003-4243-9102

Shyamala P 0000-0001-8271-2607

Nagalakshmi K V 0000-0002-2779-4707

Ravi Vital Kandisa This is me 0009-0006-5664-427X

Early Pub Date July 12, 2024
Publication Date
Submission Date December 3, 2023
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Lavanya K, Vemuri S, P S, K V N, Kandisa RV. Surfactant Micelles as Catalysts: Kinetic Modeling and Key Models. JOTCSA. 2024;11(3):1165-80.