Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 23 - 34, 03.03.2025
https://doi.org/10.18596/jotcsa.1592935

Abstract

References

  • 1. Wood TE, Thompson A. Advances in the chemistry of dipyrrins and their complexes. Chem Rev [Internet]. 2007 May 1;107(5):1831–61. Available from: <URL>.
  • 2. Baudron SA. Dipyrrin based metal complexes: reactivity and catalysis. Dalt Trans [Internet]. 2020 May 19;49(19):6161–75. Available from: <URL>.
  • 3. Shikha Singh R, Prasad Paitandi R, Kumar Gupta R, Shankar Pandey D. Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coord Chem Rev [Internet]. 2020 Jul 1;414:213269. Available from: <URL>.
  • 4. Loudet A, Burgess K. BODIPY dyes and their derivatives:  Syntheses and spectroscopic properties. Chem Rev [Internet]. 2007 Nov 1;107(11):4891–932. Available from: <URL>.
  • 5. Lu H, Shen Z. BODIPYs and their derivatives: The past, present and future. Front Chem [Internet]. 2020 Apr 28;8:541725. Available from: <URL>.
  • 6. Tahoun M, Gee CT, McCoy VE, Sander PM, Müller CE. Chemistry of porphyrins in fossil plants and animals. RSC Adv [Internet]. 2021 Feb 17;11(13):7552–63. Available from: <URL>.
  • 7. M. Ravikanth M, Vellanki L, Sharma R. Functionalized boron-dipyrromethenes and their applications. Reports Org Chem [Internet]. 2016 Jan;6:1–24. Available from: <URL>.
  • 8. Yilmaz RF, Derin Y, Misir BA, Atalay VE, Tutar ÖF, Ökten S, et al. Synthesis and spectral properties of symmetrically arylated BODIPY dyes: Experimental and computational approach. J Mol Struct [Internet]. 2023 Nov 5;1291:135962. Available from: <URL>.
  • 9. Wang L, Ding H, Ran X, Tang H, Cao D. Recent progress on reaction-based BODIPY probes for anion detection. Dye Pigment [Internet]. 2020 Jan 1;172:107857. Available from: <URL>.
  • 10. Bumagina NA, Antina E V. Review of advances in development of fluorescent BODIPY probes (chemosensors and chemodosimeters) for cation recognition. Coord Chem Rev [Internet]. 2024 Apr 15;505:215688. Available from: <URL>.
  • 11. Nuri Kursunlu A, Guler E. The sensitivity and selectivity properties of a fluorescence sensor based on quinoline-Bodipy. J Lumin [Internet]. 2014 Jan 1;145:608–14. Available from: <URL>.
  • 12. Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chem Soc Rev [Internet]. 2012 Jan 17;41(3):1130–72. Available from: <URL>.
  • 13. Yang J, Jiang H, Desbois N, Zhu G, Gros CP, Fang Y, et al. Synthesis, spectroscopic characterization, one and two-photon absorption properties, and electrochemistry of truxene π-expanded BODIPYs dyes. Dye Pigment [Internet]. 2020 May 1;176:108183. Available from: <URL>.
  • 14. Song G, Li Z, Han Y, Jia J, Zhou W, Zhang X, et al. Enhancement of two-photon absorption in boron-dipyrromethene (BODIPY) Derivatives. Molecules [Internet]. 2022 Apr 29;27(9):2849. Available from: <URL>.
  • 15. Klfout H, Stewart A, Elkhalifa M, He H. BODIPYs for dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2017 Nov 22;9(46):39873–89. Available from: <URL>.
  • 16. Singh SP, Gayathri T. Evolution of BODIPY dyes as potential sensitizers for dye‐sensitized solar cells. European J Org Chem [Internet]. 2014 Aug 16;2014(22):4689–707. Available from: <URL>.
  • 17. Kaur P, Singh K. Recent advances in the application of BODIPY in bioimaging and chemosensing. J Mater Chem C [Internet]. 2019 Sep 26;7(37):11361–405. Available from: <URL>.
  • 18. Kolemen S, Akkaya EU. Reaction-based BODIPY probes for selective bio-imaging. Coord Chem Rev [Internet]. 2018 Jan 1;354:121–34. Available from: <URL>.
  • 19. Ono M, Watanabe H, Kimura H, Saji H. BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques. ACS Chem Neurosci [Internet]. 2012 Apr 18;3(4):319–24. Available from: <URL>.
  • 20. Lee JS, Kang N young, Kim YK, Samanta A, Feng S, Kim HK, et al. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J Am Chem Soc [Internet]. 2009 Jul 29;131(29):10077–82. Available from: <URL>.
  • 21. Gawley RE, Mao H, Haque MM, Thorne JB, Pharr JS. Visible fluorescence chemosensor for saxitoxin. J Org Chem [Internet]. 2007 Mar 1;72(6):2187–91. Available from: <URL>.
  • 22. Sevinç G, Küçüköz B, Elmalı A, Hayvalı M. The synthesis of −1, −3, −5, −7, −8 aryl substituted boron-dipyrromethene chromophores: Nonlinear optical and photophysical characterization. J Mol Struct [Internet]. 2020 Apr 15;1206:127691. Available from: <URL>.
  • 23. Bittel AM, Davis AM, Wang L, Nederlof MA, Escobedo JO, Strongin RM, et al. Varied length stokes shift BODIPY-based fluorophores for multicolor microscopy. Sci Rep [Internet]. 2018 Mar 15;8(1):4590. Available from: <URL>.
  • 24. Kubin RF, Fletcher AN. Fluorescence quantum yields of some rhodamine dyes. J Lumin [Internet]. 1982 Dec 1;27(4):455–62. Available from: <URL>.
  • 25. Emirik M, Karaoğlu K, Serbest K, Çoruh U, Vazquez Lopez EM. Two novel unsymmetrical ferrocene based azines and their complexing abilities towards Cu(II): Spectroscopy, crystal structure, electrochemistry and DFT calculations. Polyhedron [Internet]. 2015 Mar 9;88:182–9. Available from: <URL>.
  • 26. Laine M, Barbosa NA, Wieczorek R, Melnikov MY, Filarowski A. Calculations of BODIPY dyes in the ground and excited states using the M06-2X and PBE0 functionals. J Mol Model [Internet]. 2016 Nov 7;22(11):260. Available from: <URL>.
  • 27. Matveeva MD, Zheleznova TY, Kostyuchenko AS, Miftyakhova AR, Zhilyaev DI, Voskressensky LG, et al. 1,7‐isoxazolyl substituted BODIPY dyes – synthesis and photophysical properties. ChemistrySelect [Internet]. 2023 Feb 3;8(5):e202204465. Available from: <URL>.
  • 28. Frisch R, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian09, 1 121, gaussian. 2009;150–66.
  • 29. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem [Internet]. 2012 Feb 15;33(5):580–92. Available from: <URL>.
  • 30. Sevinç G, Küçüköz B, Yılmaz H, Şirikçi G, Yaglioglu HG, Hayvalı M, et al. Explanation of pH probe mechanism in borondipyrromethene-benzimidazole compound using ultrafast spectroscopy technique. Sensors Actuators B Chem [Internet]. 2014 Mar 31;193:737–44. Available from: <URL>.
  • 31. Akhüseyin E, Türkmen O, Küçüköz B, Yılmaz H, Karatay A, Sevinç G, et al. Two photon absorption properties of four coordinated transition metal complexes of tetraarylazadipyrromethene compounds. Phys Chem Chem Phys [Internet]. 2016 Feb 3;18(6):4451–9. Available from: <URL>.
  • 32. Teets TS, Partyka D V., Updegraff JB, Gray TG. Homoleptic, four-coordinate azadipyrromethene complexes of d10 zinc and mercury. Inorg Chem [Internet]. 2008 Apr 1;47(7):2338–46. Available from: <URL>.
  • 33. Bumagina NA, Krasovskaya ZS, Ksenofontov AA, Antina E V., Berezin MB. Reactivity and zinc affinity of dipyrromethenes as colorimetric sensors: structural and solvation effects. J Mol Liq [Internet]. 2024 Apr 1;399:124397. Available from: <URL>.
  • 34. Helal W, Marashdeh A, Alkhatib Q, Qashmar H, Gharaibeh M, Afaneh AT. Tuning the photophysical properties of BODIPY dyes used in DSSCs as predicted by double‐hybrid TD‐DFT: The role of the methyl substituents. Int J Quantum Chem [Internet]. 2022 Dec 15;122(24):e27000. Available from: <URL>.
  • 35. Berezin MB, Dogadaeva SA, Antina E V., Lukanov MM, Ksenofontov AA, Semeikin AA. Design and physico-chemical properties of unsymmetrically substituted dipyrromethenes and their complexes with boron(III) and zinc(II). Dye Pigment [Internet]. 2022 Jun 1;202:110215. Available from: <URL>.
  • 36. Bumagina NA, Kritskaya AY, Antina E V., Berezin MB, V’yugin AI. Effect of alkyl, aryl, and meso-aza substitution on the thermal stability of BODIPY. Russ J Inorg Chem [Internet]. 2018 Oct 16;63(10):1326–32. Available from: <URL>.
  • 37. Sevinç G. Photophysical, thermal, and DFT studies on a tetraaryl-azadipyrromethene ligand and its zinc(II) complex. Turkish J Chem [Internet]. 2023 Dec 29;47(6):1438–51. Available from: <URL>.

Synthesis, Characterization, and Photophysical Properties of Novel BODIPY and [Zn(dipyrrin)2] Complexes from an Asymmetrical Dipyrromethene Ligand

Year 2025, Volume: 12 Issue: 1, 23 - 34, 03.03.2025
https://doi.org/10.18596/jotcsa.1592935

Abstract

In this study, novel homoleptic BF2 and Zn (II) complexes derived from an asymmetric dipyrromethene ligand were synthesized, with their chemical structures elucidated through NMR, and HRMS techniques. The photophysical characteristics in solution were investigated utilizing UV-visible absorption and fluorescence spectroscopy. The experimental results are clarified through Density Functional Theory (DFT) calculations and electron-hole analysis. Theoretical analyses have demonstrated that, following excitation, both electrons and holes remain confined exclusively within the BODIPY core. The charge-transfer transitions were identified between reciprocal ligands, which are responsible for the redshift observed in the main absorption band, as evidenced by electron-hole analysis. The energy levels of the frontier molecular orbitals converge contingent upon the incorporation of naphthyl and p-methoxyphenyl substituents. When analyzed under an inert nitrogen atmosphere, the compounds exhibited considerable thermal stability. Despite the similarity in the TGA curves of the complexes, the formation of the homoleptic complex resulted in an enhancement in degradation temperatures. This study indicates that chromophoric dipyrromethene complexes present advantageous prospects for advancing the development of novel materials that are both photostable and thermostable, effectively integrating charge transfer with low energy within the visible and/or near-infrared spectra.

References

  • 1. Wood TE, Thompson A. Advances in the chemistry of dipyrrins and their complexes. Chem Rev [Internet]. 2007 May 1;107(5):1831–61. Available from: <URL>.
  • 2. Baudron SA. Dipyrrin based metal complexes: reactivity and catalysis. Dalt Trans [Internet]. 2020 May 19;49(19):6161–75. Available from: <URL>.
  • 3. Shikha Singh R, Prasad Paitandi R, Kumar Gupta R, Shankar Pandey D. Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coord Chem Rev [Internet]. 2020 Jul 1;414:213269. Available from: <URL>.
  • 4. Loudet A, Burgess K. BODIPY dyes and their derivatives:  Syntheses and spectroscopic properties. Chem Rev [Internet]. 2007 Nov 1;107(11):4891–932. Available from: <URL>.
  • 5. Lu H, Shen Z. BODIPYs and their derivatives: The past, present and future. Front Chem [Internet]. 2020 Apr 28;8:541725. Available from: <URL>.
  • 6. Tahoun M, Gee CT, McCoy VE, Sander PM, Müller CE. Chemistry of porphyrins in fossil plants and animals. RSC Adv [Internet]. 2021 Feb 17;11(13):7552–63. Available from: <URL>.
  • 7. M. Ravikanth M, Vellanki L, Sharma R. Functionalized boron-dipyrromethenes and their applications. Reports Org Chem [Internet]. 2016 Jan;6:1–24. Available from: <URL>.
  • 8. Yilmaz RF, Derin Y, Misir BA, Atalay VE, Tutar ÖF, Ökten S, et al. Synthesis and spectral properties of symmetrically arylated BODIPY dyes: Experimental and computational approach. J Mol Struct [Internet]. 2023 Nov 5;1291:135962. Available from: <URL>.
  • 9. Wang L, Ding H, Ran X, Tang H, Cao D. Recent progress on reaction-based BODIPY probes for anion detection. Dye Pigment [Internet]. 2020 Jan 1;172:107857. Available from: <URL>.
  • 10. Bumagina NA, Antina E V. Review of advances in development of fluorescent BODIPY probes (chemosensors and chemodosimeters) for cation recognition. Coord Chem Rev [Internet]. 2024 Apr 15;505:215688. Available from: <URL>.
  • 11. Nuri Kursunlu A, Guler E. The sensitivity and selectivity properties of a fluorescence sensor based on quinoline-Bodipy. J Lumin [Internet]. 2014 Jan 1;145:608–14. Available from: <URL>.
  • 12. Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chem Soc Rev [Internet]. 2012 Jan 17;41(3):1130–72. Available from: <URL>.
  • 13. Yang J, Jiang H, Desbois N, Zhu G, Gros CP, Fang Y, et al. Synthesis, spectroscopic characterization, one and two-photon absorption properties, and electrochemistry of truxene π-expanded BODIPYs dyes. Dye Pigment [Internet]. 2020 May 1;176:108183. Available from: <URL>.
  • 14. Song G, Li Z, Han Y, Jia J, Zhou W, Zhang X, et al. Enhancement of two-photon absorption in boron-dipyrromethene (BODIPY) Derivatives. Molecules [Internet]. 2022 Apr 29;27(9):2849. Available from: <URL>.
  • 15. Klfout H, Stewart A, Elkhalifa M, He H. BODIPYs for dye-sensitized solar cells. ACS Appl Mater Interfaces [Internet]. 2017 Nov 22;9(46):39873–89. Available from: <URL>.
  • 16. Singh SP, Gayathri T. Evolution of BODIPY dyes as potential sensitizers for dye‐sensitized solar cells. European J Org Chem [Internet]. 2014 Aug 16;2014(22):4689–707. Available from: <URL>.
  • 17. Kaur P, Singh K. Recent advances in the application of BODIPY in bioimaging and chemosensing. J Mater Chem C [Internet]. 2019 Sep 26;7(37):11361–405. Available from: <URL>.
  • 18. Kolemen S, Akkaya EU. Reaction-based BODIPY probes for selective bio-imaging. Coord Chem Rev [Internet]. 2018 Jan 1;354:121–34. Available from: <URL>.
  • 19. Ono M, Watanabe H, Kimura H, Saji H. BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques. ACS Chem Neurosci [Internet]. 2012 Apr 18;3(4):319–24. Available from: <URL>.
  • 20. Lee JS, Kang N young, Kim YK, Samanta A, Feng S, Kim HK, et al. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J Am Chem Soc [Internet]. 2009 Jul 29;131(29):10077–82. Available from: <URL>.
  • 21. Gawley RE, Mao H, Haque MM, Thorne JB, Pharr JS. Visible fluorescence chemosensor for saxitoxin. J Org Chem [Internet]. 2007 Mar 1;72(6):2187–91. Available from: <URL>.
  • 22. Sevinç G, Küçüköz B, Elmalı A, Hayvalı M. The synthesis of −1, −3, −5, −7, −8 aryl substituted boron-dipyrromethene chromophores: Nonlinear optical and photophysical characterization. J Mol Struct [Internet]. 2020 Apr 15;1206:127691. Available from: <URL>.
  • 23. Bittel AM, Davis AM, Wang L, Nederlof MA, Escobedo JO, Strongin RM, et al. Varied length stokes shift BODIPY-based fluorophores for multicolor microscopy. Sci Rep [Internet]. 2018 Mar 15;8(1):4590. Available from: <URL>.
  • 24. Kubin RF, Fletcher AN. Fluorescence quantum yields of some rhodamine dyes. J Lumin [Internet]. 1982 Dec 1;27(4):455–62. Available from: <URL>.
  • 25. Emirik M, Karaoğlu K, Serbest K, Çoruh U, Vazquez Lopez EM. Two novel unsymmetrical ferrocene based azines and their complexing abilities towards Cu(II): Spectroscopy, crystal structure, electrochemistry and DFT calculations. Polyhedron [Internet]. 2015 Mar 9;88:182–9. Available from: <URL>.
  • 26. Laine M, Barbosa NA, Wieczorek R, Melnikov MY, Filarowski A. Calculations of BODIPY dyes in the ground and excited states using the M06-2X and PBE0 functionals. J Mol Model [Internet]. 2016 Nov 7;22(11):260. Available from: <URL>.
  • 27. Matveeva MD, Zheleznova TY, Kostyuchenko AS, Miftyakhova AR, Zhilyaev DI, Voskressensky LG, et al. 1,7‐isoxazolyl substituted BODIPY dyes – synthesis and photophysical properties. ChemistrySelect [Internet]. 2023 Feb 3;8(5):e202204465. Available from: <URL>.
  • 28. Frisch R, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian09, 1 121, gaussian. 2009;150–66.
  • 29. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem [Internet]. 2012 Feb 15;33(5):580–92. Available from: <URL>.
  • 30. Sevinç G, Küçüköz B, Yılmaz H, Şirikçi G, Yaglioglu HG, Hayvalı M, et al. Explanation of pH probe mechanism in borondipyrromethene-benzimidazole compound using ultrafast spectroscopy technique. Sensors Actuators B Chem [Internet]. 2014 Mar 31;193:737–44. Available from: <URL>.
  • 31. Akhüseyin E, Türkmen O, Küçüköz B, Yılmaz H, Karatay A, Sevinç G, et al. Two photon absorption properties of four coordinated transition metal complexes of tetraarylazadipyrromethene compounds. Phys Chem Chem Phys [Internet]. 2016 Feb 3;18(6):4451–9. Available from: <URL>.
  • 32. Teets TS, Partyka D V., Updegraff JB, Gray TG. Homoleptic, four-coordinate azadipyrromethene complexes of d10 zinc and mercury. Inorg Chem [Internet]. 2008 Apr 1;47(7):2338–46. Available from: <URL>.
  • 33. Bumagina NA, Krasovskaya ZS, Ksenofontov AA, Antina E V., Berezin MB. Reactivity and zinc affinity of dipyrromethenes as colorimetric sensors: structural and solvation effects. J Mol Liq [Internet]. 2024 Apr 1;399:124397. Available from: <URL>.
  • 34. Helal W, Marashdeh A, Alkhatib Q, Qashmar H, Gharaibeh M, Afaneh AT. Tuning the photophysical properties of BODIPY dyes used in DSSCs as predicted by double‐hybrid TD‐DFT: The role of the methyl substituents. Int J Quantum Chem [Internet]. 2022 Dec 15;122(24):e27000. Available from: <URL>.
  • 35. Berezin MB, Dogadaeva SA, Antina E V., Lukanov MM, Ksenofontov AA, Semeikin AA. Design and physico-chemical properties of unsymmetrically substituted dipyrromethenes and their complexes with boron(III) and zinc(II). Dye Pigment [Internet]. 2022 Jun 1;202:110215. Available from: <URL>.
  • 36. Bumagina NA, Kritskaya AY, Antina E V., Berezin MB, V’yugin AI. Effect of alkyl, aryl, and meso-aza substitution on the thermal stability of BODIPY. Russ J Inorg Chem [Internet]. 2018 Oct 16;63(10):1326–32. Available from: <URL>.
  • 37. Sevinç G. Photophysical, thermal, and DFT studies on a tetraaryl-azadipyrromethene ligand and its zinc(II) complex. Turkish J Chem [Internet]. 2023 Dec 29;47(6):1438–51. Available from: <URL>.
There are 37 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other), Optical Properties of Materials, Organic Chemical Synthesis
Journal Section RESEARCH ARTICLES
Authors

Gökhan Sevinç 0000-0002-7008-1067

Publication Date March 3, 2025
Submission Date November 28, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Sevinç G. Synthesis, Characterization, and Photophysical Properties of Novel BODIPY and [Zn(dipyrrin)2] Complexes from an Asymmetrical Dipyrromethene Ligand. JOTCSA. 2025;12(1):23-34.