Research Article
BibTex RIS Cite

SYNTHESIS AND CHARACTERIZATION OF GRAPHENE QUANTUM DOTS FROM DRIED PINE LEAVES

Year 2019, Volume: 2 Issue: 2, 109 - 120, 15.11.2019

Abstract

In this study, it was aimed to obtain graphene quantum
dots (GQDs) from dried pine leaf (DPL) (peanut pine (Cedruslibani,
Pinusnigra)). Decomposition temperatures of the dried pine leaf were determined
by DTA-TGA analysis in nitrogen atmosphere. DPL was subjected to carbonization
in an ash furnace for 6 hours in air,  
at temperatures of 250, 300, 350 0C. The materials obtained from
the thermal process are characterized using FT-IR; XRD; SEM-EDAX; UV-VIS and
Fluorescence spectrometer analysis. When dissolved in deionized water, these materials
emits blue fluorescence under UV-A and UV-C excitation. The emission and excitation
peaks are very sharp indicating an homogeneous particle distribution of GQDs’s
in the water. When the analysis results were examined, it was observed that the
substance obtained as a result of the carbonization process at 350 0C
for 6 hours was compatible with GQDs data in the literature.

Supporting Institution

Çukurova University

Project Number

FDK-2016-6191

Thanks

13rd National Congress of Chemical Engineering (UKMK-2018)

References

  • 1. Külcü R. Sanayi Devriminden 1700 Yıl Önce Yapılmış Erken Bir Keşif: Heron'un Buhar Türbini (Aerolipie). Academia Journal of Social Sciences. 2016;1(2):32-9.
  • 2. Pryzhkova M. V. Concise Review: Carbon Nanotechnology: Perspectives in Stem Cell Research. Stem Cells Translational Medicine. 2013;2:376-83.
  • 3. Jariwala D, Sangwan V. K, Lauhon L. J, Marks T. J, Hersam M. C. et al.Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42(7):2824-60.
  • 4. Zhai W, Srikanth N, Kong L. B, Zhou K. et al.Carbon nanomaterials in tribology. Carbon. 2017;119:150-171.
  • 5. Wen J, Xu Y, Li H, Lu A,Sun S. et al. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chemical Communications. 2015;51(57):11331–524
  • 6. Mehra N. K, Jain A. K, Nahar M. et al.Carbon nanomaterials in oncology: an expanding horizon. Drug Discovery Today. 2018;23(5):1016-25.
  • 7. Shchipunov Y. A, Khlebnikov O. N, Silant’ev V. E. et al. Carbon Quantum Dots Hydrothermally Synthesized from Chitin. Polymer Science, Ser. B, 2015;57(1):16–22.
  • 8. Qian Z, Chai L, Tang C, Huang Y, Chen J, Feng H. A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors and Actuators B. 2016;222:879–86.
  • 9. Muthurasu A,Ganesh V. et al. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl Biochem Biotechnol. 2014;174:945–59.
  • 10. Roushani M, Mavaei M, Rajabi H. R. et al. Graphene quantum dots as novel and green nano-materials for thevisible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A: Chemical. 2015;409:102–9.
  • 11. Zhang C, Cui Y, Song L, Liu X, Hu Z. et al. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta. 2016;150:54–60.
  • 12. Ahmadian‑Fard‑Fini S, Salavati‑Niasari M, Safardoust‑Hojaghan H. et al. Hydrothermal green synthesis and photocatalytic activityof magnetic CoFe2O4–carbon quantum dots nanocompositeby turmeric precursor. J Mater Sci: Mater Electron. 2017;28:16205–14.
  • 13. Hallaj T, Amjadi M, Manzoori J. L, Shokri R. et al. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta. 2015;182:789–96.
  • 14. Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C. et al. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 2017;175:305–12.
  • 15. Kumawat M. K, Thakur M, Gurung R. B, Srivastava R. et al. Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chem. Eng. 2017, 5, 1382−91.
  • 16. Arumugam N, Kim J. et al. Synthesis of carbon quantum dots from Broccoli and their ability todetect silver ions. Materials Letters. 2018; 219:37–40.
  • 17. Das R, Bandyopadhyay R, Pramanik P. et al. Carbon quantum dots from natural resource: A review.Materials Today Chemistry. 2018;8:96-109.
  • 18. Zaytseva O, Neumann G. et al. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016;3:17.
  • 19. Benítez-Martínez S, Valcárcel M. et al. Graphene quantum dots as sensor for phenols in olive oil. Sensors and Actuators B. 2014;197:350–7.
  • 20. Bak S, Kim D, Lee H. et al. Graphene quantum dots and their possible energy applications: Areview. Current Applied Physics.2016;16:1192-201.
  • 21. Jin Z, Owour P, Lei S, Ge L. et al. Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in Colloid & Interface Science. 2015;20:439–53.
  • 22. Amjadi M, Shokri R, Hallaj T. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016; 153: 619–24.
  • 23. Habiba K, Makarov V. I, Avalos J, Guinel M. J. F, Weiner B. R, Morell G. et al. Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon. 2013;64:341 –50.
  • 24. Teymourinia H, Salavati-Niasari M, Amiri O, Safardoust-Hojaghan H. et al. Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. Journal of Molecular Liquids. 2017; 242: 447–55. 25. Ettefaghi E, Ghobadian B, Rashidi A, Najafi G, Khoshtaghaza M. H, Pourhashem S. et al. Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots. Energy Conversion and Management. 2017;153:215–23.
  • 26. Sekkal W, Zaoui A. et al. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs. Scientıfıc Reports. 2013; 3 : 1587.
  • 27. Das T, Saikiaa B. K, Dekaboruaha H. P, Bordoloia M. et al. Blue-fluorescent and biocompatible carbon dots derived from abundant low quality coals. Journal of Photochemistry & Photobiology, B: Biology. 2019; 195: 1–11.
  • 28. Bedeloğlu A, Taş M, Grafen ve Grafen Üretim Yöntemleri. AKU J. Sci. Eng. 16 2016; 031203: 544-54.
  • 29. Liu X, Yang R, Xu M, et al. Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties. Polymers. 2018; 10, 1168.
  • 30. Tiyek İ, Dönmez U, Yıldırım B, et. al. Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. SAÜ Fen Bil Der. 2016; 20. Cilt, 2. Sayı: s. 349-57.
Year 2019, Volume: 2 Issue: 2, 109 - 120, 15.11.2019

Abstract

Project Number

FDK-2016-6191

References

  • 1. Külcü R. Sanayi Devriminden 1700 Yıl Önce Yapılmış Erken Bir Keşif: Heron'un Buhar Türbini (Aerolipie). Academia Journal of Social Sciences. 2016;1(2):32-9.
  • 2. Pryzhkova M. V. Concise Review: Carbon Nanotechnology: Perspectives in Stem Cell Research. Stem Cells Translational Medicine. 2013;2:376-83.
  • 3. Jariwala D, Sangwan V. K, Lauhon L. J, Marks T. J, Hersam M. C. et al.Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42(7):2824-60.
  • 4. Zhai W, Srikanth N, Kong L. B, Zhou K. et al.Carbon nanomaterials in tribology. Carbon. 2017;119:150-171.
  • 5. Wen J, Xu Y, Li H, Lu A,Sun S. et al. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chemical Communications. 2015;51(57):11331–524
  • 6. Mehra N. K, Jain A. K, Nahar M. et al.Carbon nanomaterials in oncology: an expanding horizon. Drug Discovery Today. 2018;23(5):1016-25.
  • 7. Shchipunov Y. A, Khlebnikov O. N, Silant’ev V. E. et al. Carbon Quantum Dots Hydrothermally Synthesized from Chitin. Polymer Science, Ser. B, 2015;57(1):16–22.
  • 8. Qian Z, Chai L, Tang C, Huang Y, Chen J, Feng H. A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors and Actuators B. 2016;222:879–86.
  • 9. Muthurasu A,Ganesh V. et al. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl Biochem Biotechnol. 2014;174:945–59.
  • 10. Roushani M, Mavaei M, Rajabi H. R. et al. Graphene quantum dots as novel and green nano-materials for thevisible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A: Chemical. 2015;409:102–9.
  • 11. Zhang C, Cui Y, Song L, Liu X, Hu Z. et al. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta. 2016;150:54–60.
  • 12. Ahmadian‑Fard‑Fini S, Salavati‑Niasari M, Safardoust‑Hojaghan H. et al. Hydrothermal green synthesis and photocatalytic activityof magnetic CoFe2O4–carbon quantum dots nanocompositeby turmeric precursor. J Mater Sci: Mater Electron. 2017;28:16205–14.
  • 13. Hallaj T, Amjadi M, Manzoori J. L, Shokri R. et al. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta. 2015;182:789–96.
  • 14. Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C. et al. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 2017;175:305–12.
  • 15. Kumawat M. K, Thakur M, Gurung R. B, Srivastava R. et al. Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chem. Eng. 2017, 5, 1382−91.
  • 16. Arumugam N, Kim J. et al. Synthesis of carbon quantum dots from Broccoli and their ability todetect silver ions. Materials Letters. 2018; 219:37–40.
  • 17. Das R, Bandyopadhyay R, Pramanik P. et al. Carbon quantum dots from natural resource: A review.Materials Today Chemistry. 2018;8:96-109.
  • 18. Zaytseva O, Neumann G. et al. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016;3:17.
  • 19. Benítez-Martínez S, Valcárcel M. et al. Graphene quantum dots as sensor for phenols in olive oil. Sensors and Actuators B. 2014;197:350–7.
  • 20. Bak S, Kim D, Lee H. et al. Graphene quantum dots and their possible energy applications: Areview. Current Applied Physics.2016;16:1192-201.
  • 21. Jin Z, Owour P, Lei S, Ge L. et al. Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in Colloid & Interface Science. 2015;20:439–53.
  • 22. Amjadi M, Shokri R, Hallaj T. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016; 153: 619–24.
  • 23. Habiba K, Makarov V. I, Avalos J, Guinel M. J. F, Weiner B. R, Morell G. et al. Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon. 2013;64:341 –50.
  • 24. Teymourinia H, Salavati-Niasari M, Amiri O, Safardoust-Hojaghan H. et al. Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. Journal of Molecular Liquids. 2017; 242: 447–55. 25. Ettefaghi E, Ghobadian B, Rashidi A, Najafi G, Khoshtaghaza M. H, Pourhashem S. et al. Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots. Energy Conversion and Management. 2017;153:215–23.
  • 26. Sekkal W, Zaoui A. et al. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs. Scientıfıc Reports. 2013; 3 : 1587.
  • 27. Das T, Saikiaa B. K, Dekaboruaha H. P, Bordoloia M. et al. Blue-fluorescent and biocompatible carbon dots derived from abundant low quality coals. Journal of Photochemistry & Photobiology, B: Biology. 2019; 195: 1–11.
  • 28. Bedeloğlu A, Taş M, Grafen ve Grafen Üretim Yöntemleri. AKU J. Sci. Eng. 16 2016; 031203: 544-54.
  • 29. Liu X, Yang R, Xu M, et al. Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties. Polymers. 2018; 10, 1168.
  • 30. Tiyek İ, Dönmez U, Yıldırım B, et. al. Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. SAÜ Fen Bil Der. 2016; 20. Cilt, 2. Sayı: s. 349-57.
There are 29 citations in total.

Details

Primary Language English
Subjects Chemical Engineering, Material Production Technologies
Journal Section Full-length articles
Authors

Yunus Önal 0000-0001-6342-6816

Şifa Kır This is me 0000-0003-0916-6974

İlyas Dehri 0000-0002-8653-9124

Ramazan Esen This is me 0000-0001-8078-5458

Project Number FDK-2016-6191
Publication Date November 15, 2019
Submission Date November 8, 2018
Acceptance Date September 27, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Önal, Y., Kır, Ş., Dehri, İ., Esen, R. (2019). SYNTHESIS AND CHARACTERIZATION OF GRAPHENE QUANTUM DOTS FROM DRIED PINE LEAVES. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 2(2), 109-120.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)