Year 2022,
Volume: 5 Issue: 2, 127 - 144, 30.11.2022
Nedim Albayrak
,
Erhan Kanışlı
References
- 1. Nelson JM, Griffin EG. Adsorption of invertase. J Am Chem Soc. 1916;38(5):1109–15.
- 2. Matijošytė I, Arends IWCE, de Vries S, Sheldon RA. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym. 2010;62(2):142–8.
- 3. Cao L, Langen L Van, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–94.
- 4. Liu T, Rao Y, Zhou W, Zhuang W, Ge L, Lin R, et al. Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surfaces B Biointerfaces. 2021;205(30):111888.
- 5. Santos JCS dos, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 2015;7(16):2413–32.
- 6. Misson M, Jin B, Chen B, Zhang H. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess Biosyst Eng. 2015;38(10):1915–23.
- 7. Cipolatti EP, Manoel EA, Fernandez-Lafuente R, Freire DMG. Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnol Res Innov. 2017;1(1):26–34.
- 8. Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, et al. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surfaces B Biointerfaces. 2020;189:110874.
- 9. Cao L. Immobilised enzymes: science or art? Curr Opin Chem Biol. 2005;9(2):217–26.
- 10. Cheng HN, Gross RA. Polymer biocatalysis and biomaterials: Current trends and developments. In: Cheng HN, Gross RA, editors. Polymer Biocatalysis and Biomaterials II. Washington, DC: ACS Symposium Series; American Chemical Society; 2008. p. 1–20.
- 11. Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32(3):341–50.
- 12. Würtz Christensen M, Andersen L, Husum TL, Kirk O. Industrial lipase immobilization. Eur J lipid Sci Technol. 2003;105(6):318–321.
- 13. Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994;369(6478):298–301.
- 14. Cao L, van Rantwijk F, Sheldon RA. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett. 2000;2(10):1361–4.
- 15. Lopez-Serrano P, Cao L, Van Rantwijk F, Sheldon R. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett. 2002;24(16):1379–1383.
- 16. Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules. 2014;15(5):1896–903.
- 17. He P, Greenway G, Haswell SJ. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system. Process Biochem. 2010;45(4):593–7.
- 18. Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–6.
- 19. Pchelintsev N a., Youshko MI, Švedas VK. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym. 2009;56(4):202–7.
- 20. Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Bioresour Technol. 2015;190:122–31.
- 21. Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002;18(2):240–251.
- 22. Taleb MA, Gomaa SK, Wahba MI, Zaki RA, El-Fiky AF, El-Refai HA, et al. Bioscouring of wool fibres using immobilized thermophilic lipase. Int J Biol Macromol. 2022;194:800–10.
- 23. Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases. Biomol Eng. 2005;22(1–3):51–6.
- 24. Schmidt-Dannert C, Sztajer H. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochem Biophys Acta. 1994;1214:43–53.
- 25. Bayramoglu G, Karagoz B, Altintas B, Arica MY, Bicak N. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst Eng. 2011;34(6):735–46.
- 26. Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng. 2011;34(7):803–10.
- 27. Gong MD, Pei XJ, Duan GX, Zhi GY, Liu ZQ, Zhang DH. Molecular cages encapsulating lipase and the effect of cage hydrophobicity and cage size. Mater Des. 2022;220:110865.
- 28. Remonatto D, Miotti RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022;114:1–20.
- 29. Güleç HA, Gürdaş S, Albayrak N, Mutlu M. Immobilization of Aspergillus oryzae beta-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioprocess Eng. 2010;15(6):1006–1015.
- 30. Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013;104:83–90.
- 31. Ondul E, Dizge N, Albayrak N. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids Surfaces B Biointerfaces. 2012;95(0):109–14.
- 32. Bi Y, Zhou H, Jia H, Wei P. A flow-through enzymatic microreactor immobilizing lipase based on layer-by-layer method for biosynthetic process: Catalyzing the transesterification of soybean oil for fatty acid methyl ester production. Process Biochem. 2017;54:73–80.
- 33. Özarslaner E, Albayrak N. Stability of p-nitrophenyl propionate substrate for spectrophotometric measurement of lipase activity. GIDA. 2013;38(3):143–9.
- 34. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
- 35. Borkovec M, Koper GJM. Proton binding characteristics of branched polyelectrolytes. Macromolecules. 1997;30(7):2151–8.
- 36. Bjurlin M, Bloomer S, Haas MJ. Composition and activity of commercial triacylglycerol acylhydrolase preparations. J Am Oil Chem Soc. 2001;78(2):153–60.
- 37. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR. Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym. 2001;11(4–6):657–663.
- 38. Lindquist GM, Stratton RA. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J Colloid Interface Sci. 1976;55(1):45–59.
- 39. Llerena-Suster CR, Briand LE, Morcelle SR. Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids Surfaces B Biointerfaces. 2014;121:11–20.
- 40. Hernáiz MJ, Rua M, Celda B, Medina P, Sinisterra J V, Sánchez-Montero JM. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Appl Biochem Biotechnol. 1994;44(3):213–29.
- 41. Guauque Torres MDP, Foresti ML, Ferreira ML. Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express. 2013;3(1):25.
- 42. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(5):790–802.
- 43. Pan J, Kong X-D, Li C-X, Ye Q, Xu J-H, Imanaka T. Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. J Mol Catal B Enzym. 2011;68(3–4):256–61.
- 44. Andersson MM, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine. J Biotechnol. 1999;72(1–2):21–31.
- 45. Schwinté P, Ball V, Szalontai B, Haikel Y, Voegel J-C, Schaaf P. Secondary structure of proteins adsorbed onto or embedded in polyelectrolyte multilayers. Biomacromolecules. 2002;3(6):1135–43.
- 46. Herrgård S, Gibas CJ, Subramaniam S. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry. 2000;39(11):2921–30.
- 47. Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005;92(2):261–8.
- 48. Hormozi Jangi SR, Akhond M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem. 2022;120:138–55.
- 49. Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–82.
- 50. Derewenda Z, Derewenda U, Dodson G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol. 1992;227(3):818–39.
- 51. Peters GH, Olsen OH, Svendsen a, Wade RC. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996;71(1):119–29.
- 52. Rehm S, Trodler P, Pleiss J. Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Sci. 2010;19(11):2122–30.
- 53. Zaitsev SY, Gorokhova I V, Kashtigo T V, Zintchenko A, Dautzenberg H. General approach for lipases immobilization in polyelectrolyte complexes. Colloids Surfaces A Physicochem Eng Asp. 2003;221(1–3):209–20.
Preparation and Characterization of Cross-Linked PEI-Lipase Aggregates with Improved Activity and Stability
Year 2022,
Volume: 5 Issue: 2, 127 - 144, 30.11.2022
Nedim Albayrak
,
Erhan Kanışlı
Abstract
Using polyethyleneimine (PEI) as the sole precipitation and aggregation agent, PEI-enzyme complexation was investigated with lipases from Rhizomucor miehei, Thermomyces lanuginosus and Candida antarctica. The approach relied on rapid development of PEI-lipase aggregates in a solution and followed by glutaraldehyde cross-linking thus resulting in cross-linked PEI-lipase aggregates. PEI to enzyme mass ratio of a 1/ 20-40 range, alkaline pH and the absence of impurities produced higher coupling yields and activities. The pH affected the precipitatibility and/or relative activity of the aggregates. Impurities in some lipase preparations may prevent the formation or precipitation of the PEI-lipase aggregates. The aggregates attained higher stabilities especially at high pHs and enhanced thermostability with at least a 20-fold at ambient temperatures. By using p-nitrophenyl propionate as a soluble substrate, app. Vmax for the immobilized lipase increased by two-fold with only 25% increment in app. Km compared with the soluble lipase. Complexation with PEI may have produced favorable interface assisting for conformational change for the lipase activation. Thus, cross-linked PEI-lipase aggregates with ease of recovery and stability can be simple and inexpensive alternative for carrier-free immobilized lipases.
Supporting Institution
Scientific and Technological Research Council of Turkey
Thanks
Appreciation is given to Mehmet Bora Kaydan and Nahit Aktaş for their valuable contributions.
References
- 1. Nelson JM, Griffin EG. Adsorption of invertase. J Am Chem Soc. 1916;38(5):1109–15.
- 2. Matijošytė I, Arends IWCE, de Vries S, Sheldon RA. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym. 2010;62(2):142–8.
- 3. Cao L, Langen L Van, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–94.
- 4. Liu T, Rao Y, Zhou W, Zhuang W, Ge L, Lin R, et al. Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surfaces B Biointerfaces. 2021;205(30):111888.
- 5. Santos JCS dos, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 2015;7(16):2413–32.
- 6. Misson M, Jin B, Chen B, Zhang H. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess Biosyst Eng. 2015;38(10):1915–23.
- 7. Cipolatti EP, Manoel EA, Fernandez-Lafuente R, Freire DMG. Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnol Res Innov. 2017;1(1):26–34.
- 8. Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, et al. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surfaces B Biointerfaces. 2020;189:110874.
- 9. Cao L. Immobilised enzymes: science or art? Curr Opin Chem Biol. 2005;9(2):217–26.
- 10. Cheng HN, Gross RA. Polymer biocatalysis and biomaterials: Current trends and developments. In: Cheng HN, Gross RA, editors. Polymer Biocatalysis and Biomaterials II. Washington, DC: ACS Symposium Series; American Chemical Society; 2008. p. 1–20.
- 11. Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32(3):341–50.
- 12. Würtz Christensen M, Andersen L, Husum TL, Kirk O. Industrial lipase immobilization. Eur J lipid Sci Technol. 2003;105(6):318–321.
- 13. Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994;369(6478):298–301.
- 14. Cao L, van Rantwijk F, Sheldon RA. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett. 2000;2(10):1361–4.
- 15. Lopez-Serrano P, Cao L, Van Rantwijk F, Sheldon R. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett. 2002;24(16):1379–1383.
- 16. Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules. 2014;15(5):1896–903.
- 17. He P, Greenway G, Haswell SJ. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system. Process Biochem. 2010;45(4):593–7.
- 18. Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–6.
- 19. Pchelintsev N a., Youshko MI, Švedas VK. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym. 2009;56(4):202–7.
- 20. Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Bioresour Technol. 2015;190:122–31.
- 21. Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002;18(2):240–251.
- 22. Taleb MA, Gomaa SK, Wahba MI, Zaki RA, El-Fiky AF, El-Refai HA, et al. Bioscouring of wool fibres using immobilized thermophilic lipase. Int J Biol Macromol. 2022;194:800–10.
- 23. Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases. Biomol Eng. 2005;22(1–3):51–6.
- 24. Schmidt-Dannert C, Sztajer H. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochem Biophys Acta. 1994;1214:43–53.
- 25. Bayramoglu G, Karagoz B, Altintas B, Arica MY, Bicak N. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst Eng. 2011;34(6):735–46.
- 26. Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng. 2011;34(7):803–10.
- 27. Gong MD, Pei XJ, Duan GX, Zhi GY, Liu ZQ, Zhang DH. Molecular cages encapsulating lipase and the effect of cage hydrophobicity and cage size. Mater Des. 2022;220:110865.
- 28. Remonatto D, Miotti RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022;114:1–20.
- 29. Güleç HA, Gürdaş S, Albayrak N, Mutlu M. Immobilization of Aspergillus oryzae beta-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioprocess Eng. 2010;15(6):1006–1015.
- 30. Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013;104:83–90.
- 31. Ondul E, Dizge N, Albayrak N. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids Surfaces B Biointerfaces. 2012;95(0):109–14.
- 32. Bi Y, Zhou H, Jia H, Wei P. A flow-through enzymatic microreactor immobilizing lipase based on layer-by-layer method for biosynthetic process: Catalyzing the transesterification of soybean oil for fatty acid methyl ester production. Process Biochem. 2017;54:73–80.
- 33. Özarslaner E, Albayrak N. Stability of p-nitrophenyl propionate substrate for spectrophotometric measurement of lipase activity. GIDA. 2013;38(3):143–9.
- 34. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
- 35. Borkovec M, Koper GJM. Proton binding characteristics of branched polyelectrolytes. Macromolecules. 1997;30(7):2151–8.
- 36. Bjurlin M, Bloomer S, Haas MJ. Composition and activity of commercial triacylglycerol acylhydrolase preparations. J Am Oil Chem Soc. 2001;78(2):153–60.
- 37. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR. Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym. 2001;11(4–6):657–663.
- 38. Lindquist GM, Stratton RA. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J Colloid Interface Sci. 1976;55(1):45–59.
- 39. Llerena-Suster CR, Briand LE, Morcelle SR. Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids Surfaces B Biointerfaces. 2014;121:11–20.
- 40. Hernáiz MJ, Rua M, Celda B, Medina P, Sinisterra J V, Sánchez-Montero JM. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Appl Biochem Biotechnol. 1994;44(3):213–29.
- 41. Guauque Torres MDP, Foresti ML, Ferreira ML. Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express. 2013;3(1):25.
- 42. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(5):790–802.
- 43. Pan J, Kong X-D, Li C-X, Ye Q, Xu J-H, Imanaka T. Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. J Mol Catal B Enzym. 2011;68(3–4):256–61.
- 44. Andersson MM, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine. J Biotechnol. 1999;72(1–2):21–31.
- 45. Schwinté P, Ball V, Szalontai B, Haikel Y, Voegel J-C, Schaaf P. Secondary structure of proteins adsorbed onto or embedded in polyelectrolyte multilayers. Biomacromolecules. 2002;3(6):1135–43.
- 46. Herrgård S, Gibas CJ, Subramaniam S. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry. 2000;39(11):2921–30.
- 47. Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005;92(2):261–8.
- 48. Hormozi Jangi SR, Akhond M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem. 2022;120:138–55.
- 49. Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–82.
- 50. Derewenda Z, Derewenda U, Dodson G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol. 1992;227(3):818–39.
- 51. Peters GH, Olsen OH, Svendsen a, Wade RC. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996;71(1):119–29.
- 52. Rehm S, Trodler P, Pleiss J. Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Sci. 2010;19(11):2122–30.
- 53. Zaitsev SY, Gorokhova I V, Kashtigo T V, Zintchenko A, Dautzenberg H. General approach for lipases immobilization in polyelectrolyte complexes. Colloids Surfaces A Physicochem Eng Asp. 2003;221(1–3):209–20.