Research Article
BibTex RIS Cite

Spectroscopic Identification of Musk Ambrette as a VOC and Phototoxicity Marker in Aircraft Cabin Materials

Year 2025, Volume: 2 Issue: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 112 - 130, 31.12.2025

Abstract

This study investigates the use of musk ambrette (4-tert-butyl-3-methoxy-2,6-dinitrotoluene), a nitro-aromatic fragrance compound, as a spectral marker for material degradation and volatile organic compound (VOC) emission in aviation cabin materials. Musk ambrette exhibits distinct Fourier infrared (FT-IR) and ultraviolet-visible (UV–Vis) spectral features, including strong nitro group stretches at 1520 cm⁻¹ and 1350 cm⁻¹, methoxy C–O stretches between 1250–1020 cm⁻¹, and UV absorbance in the 200–320 nm range. These properties enable quantitative tracking of photodecomposition and VOC release under simulated ageing conditions. Accelerated UV-aging (UVA) exposure over 72 hours resulted in a 45–60% reduction in NO₂ band intensity and a 50% decrease in UV absorbance at λ ≈ 305 nm, indicating significant molecular breakdown. Complementary gas chromatography–mass spectrometry (GC-MS) analysis confirmed increased VOC concentrations correlating with spectral decay. The study also addresses toxicological implications, as musk ambrette is known for phototoxic and photoallergenic effects. Spectral transformation products, including nitroso and amine derivatives, were monitored to assess potential health risks. This integrated approach demonstrates the feasibility of using musk ambrette as a dual-purpose marker for both material integrity and cabin air quality, offering a practical protocol for aviation safety assessments.

References

  • FAA. (2020). A Physical Basis for Comparing Flammability of Aircraft Cabin Materials Using a Microscale Combustion Calorimeter. DOT/FAA/TC-20/35, 1–33.
  • Fernandes, J. M. D. (2022). Direct Detection of Organic and Biological Contaminants in International Space Stations (Vol. 31017102). NOVA Science and Technology. https://www.proquest.com/docview/3059433072?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses
  • Giovinazzo, V. J., Harber, L. C., Armstrong, R. B., & Kochevar, I. E. (1980). Photoallergic contact dermatitis to musk ambrette: Clinical report of two patients with persistent light reactor patterns. Journal of the American Academy of Dermatology, 3(4), 384–393. https://doi.org/10.1016/S0190-9622(80)80332-X
  • Guan, J., Li, Z., & Yang, X. (2015). Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin. Atmospheric Environment, 111, 1–9. https://doi.org/10.1016/j.atmosenv.2015.04.002
  • He, J., Lin, C., Liu, Z., Yang, C., & Yang, X. (2024). Investigating the spatial distribution of volatile organic compounds in aircraft cabins from various emission sources. In Environmental Research (Vol. 245). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.118064
  • IARC. (1996). Musk Ambrette and Musk Xylene. International Agency for Research on Cancer (IARC), 65, 477–496.
  • ICAO. (2025, February). ICAO Requirements related to Cabin Safety. https://www2023.icao.int/safety/airnavigation/OPS/CabinSafety/Pages/ICAO-Requirements-related-to-Cabin-Safety.aspx
  • Li, Z., Shi, M., Liu, H., Yi, Z., Mo, L., & Jiang, T. (2024). Binding Mechanism of Nitro Musks to Human Lactoferrin: Multispectral Approach, Docking and Molecular Dynamics Simulation. Chemistry and Biodiversity, 21(12). https://doi.org/10.1002/cbdv.202401610
  • Lin, N., Huang, X., Ma, C., & Han, J. (2021). Clinical and pathological findings of chronic actinic dermatitis. Photodermatology Photoimmunology and Photomedicine, 37(4), 313–320. https://doi.org/10.1111/phpp.12654
  • Liu, J., Zhang, W., Zhou, Q., Zhou, Q., Zhang, Y., & Zhu, L. (2021). Polycyclic musks in the environment: A review of their concentrations and distribution, ecological effects and behavior, current concerns and future prospects. Critical Reviews in Environmental Science and Technology, 51(4), 323–377. https://doi.org/10.1080/10643389.2020.1724748
  • Maia, E. R., Magalhães, D. R. B., Lerner, D. A., Berthomieu, D., & Bernassau, J.-M. (2014). Quantum Calculation for Musk Molecules Infrared Spectra towards the Understanding of Odor. Advances in Chemistry, 2014, 1–13. https://doi.org/10.1155/2014/398948
  • Mitra, R., Goddard, R., & Pörschke, K. R. (2017). 9,9-Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. Inorganic Chemistry, 56(11), 6712–6724. https://doi.org/10.1021/acs.inorgchem.7b00836
  • Nandan, A., Siddiqui, N. A., Singh, C., & Aeri, A. (2021). Occupational and environmental impacts of indoor air pollutant for different occupancy: a review. In Toxicology and Environmental Health Sciences (Vol. 13, Issue 4, pp. 303–322). Korean Society of Environmental Risk Assessment and Health Science. https://doi.org/10.1007/s13530-021-00102-9
  • NIST Chemistry. (2025). Musk ambrette (artificial). https://webbook.nist.gov/cgi/cbook.cgi?ID=C83669&Mask=2017
  • Parker, R. D., Buehler, E. V., & Newmann, A. (1986). Phototoxicity, photoallergy, and contact sensitization of nitro musk perfume raw materials. Contact Dermatitis, 14(2), 103–109. https://doi.org/10.1111/J.1600-0536.1986.TB01169.X;PAGEGROUP:STRING:PUBLICATION
  • Schmidt, F., Wenzel, J., Halland, N., Güssregen, S., Delafoy, L., & Czich, A. (2019). Computational Investigation of Drug Phototoxicity: Photosafety Assessment, Photo-Toxophore Identification, and Machine Learning. Chemical Research in Toxicology, 32(11), 2338–2352. https://doi.org/10.1021/acs.chemrestox.9b00338
  • Wang, S., Cao, X., Miao, D., Pang, L., & Li, J. (2024). A Review of In-Flight Thermal Comfort and Air Quality Status in Civil Aircraft Cabin Environments. Buildings, 14(7). https://doi.org/10.3390/buildings14072001
  • Weerasinghe, M. A. S. N., Nwoko, T., & Konkolewicz, D. (2025). Polymers and light: a love-hate relationship. In Chemical Science (Vol. 16, Issue 13, pp. 5326–5352). Royal Society of Chemistry. https://doi.org/10.1039/d5sc00997a
  • Wojnarowska, F., & Calnan, C. D. (1986). Contact and photocontact allergy to musk ambrette. British Journal of Dermatology, 114(6), 667–675. https://doi.org/10.1111/J.1365-2133.1986.TB04874.X
  • Yin, Y., He, J., Zhao, L., Pei, J., Yang, X., Sun, Y., Cui, X., Lin, C.-H., Wei, D., & Chen, Q. (2022). Identification of Key
  • Volatile Organic Compounds in Aircraft Cabins and Associated Inhalation Health Risks. Environment International, 158(106999), 1–40.
  • Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. http://www.springerplus.com/content/2/1/398

Kabin Malzemelerinde Uçucu Organik Bileşik (VOC) ve Fototoksisite Belirteci Olarak Misk-i Amber'in Spektroskopik Tanımlanması

Year 2025, Volume: 2 Issue: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 112 - 130, 31.12.2025

Abstract

Bu çalışma, nitro-aromatik bir koku bileşiği olan misk-i amberin (4-tert-bütil-3-metoksi-2,6-dinitrotoluen), havacılık kabin malzemelerinde malzeme bozunumu ve uçucu organik bileşik (VOC) emisyonu için bir spektral belirteç olarak kullanımını araştırmaktadır. Misk-i amber, 1520 cm⁻¹ ve 1350 cm⁻¹'de güçlü nitro grubu gerilmeleri, 1250-1020 cm⁻¹ arasında metoksi C–O gerilmeleri ve 200-320 nm aralığında UV absorbansı dahil olmak üzere belirgin kızılötesi (FT-IR) ve ultraviyole-görünür (UV-Vis) spektral özellikler sergilemektedir. Bu özellikler, simüle edilmiş yaşlanma koşulları altında fotodekompozisyonun ve VOC salınımının nicel olarak izlenmesini sağlar. 72 saat boyunca hızlandırılmış UVA maruziyeti, NO₂ bant yoğunluğunda %45-60'lık bir azalmaya ve λ ≈ 305 nm'de UV absorbansında %50'lik bir azalmaya neden oldu ve bu da önemli moleküler bozulmaya işaret etti. Tamamlayıcı gaz kromatografisi – kütle spektroskopisi (GC-MS) analizi, spektral bozunmayla ilişkili artan VOC konsantrasyonlarını doğruladı. Çalışma ayrıca, misk-i amberin fototoksik ve fotoalerjenik etkileriyle bilindiği için toksikolojik etkileri de ele almaktadır. Nitrozo ve amin türevleri de dahil olmak üzere spektral dönüşüm ürünleri, potansiyel sağlık risklerini değerlendirmek için izlendi. Bu entegre yaklaşım, misk-i amberin hem malzeme bütünlüğü hem de kabin hava kalitesi için çift amaçlı bir belirteç olarak kullanılmasının uygulanabilirliğini göstererek havacılık güvenliği değerlendirmeleri için pratik bir protokol sunmaktadır.

References

  • FAA. (2020). A Physical Basis for Comparing Flammability of Aircraft Cabin Materials Using a Microscale Combustion Calorimeter. DOT/FAA/TC-20/35, 1–33.
  • Fernandes, J. M. D. (2022). Direct Detection of Organic and Biological Contaminants in International Space Stations (Vol. 31017102). NOVA Science and Technology. https://www.proquest.com/docview/3059433072?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses
  • Giovinazzo, V. J., Harber, L. C., Armstrong, R. B., & Kochevar, I. E. (1980). Photoallergic contact dermatitis to musk ambrette: Clinical report of two patients with persistent light reactor patterns. Journal of the American Academy of Dermatology, 3(4), 384–393. https://doi.org/10.1016/S0190-9622(80)80332-X
  • Guan, J., Li, Z., & Yang, X. (2015). Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin. Atmospheric Environment, 111, 1–9. https://doi.org/10.1016/j.atmosenv.2015.04.002
  • He, J., Lin, C., Liu, Z., Yang, C., & Yang, X. (2024). Investigating the spatial distribution of volatile organic compounds in aircraft cabins from various emission sources. In Environmental Research (Vol. 245). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.118064
  • IARC. (1996). Musk Ambrette and Musk Xylene. International Agency for Research on Cancer (IARC), 65, 477–496.
  • ICAO. (2025, February). ICAO Requirements related to Cabin Safety. https://www2023.icao.int/safety/airnavigation/OPS/CabinSafety/Pages/ICAO-Requirements-related-to-Cabin-Safety.aspx
  • Li, Z., Shi, M., Liu, H., Yi, Z., Mo, L., & Jiang, T. (2024). Binding Mechanism of Nitro Musks to Human Lactoferrin: Multispectral Approach, Docking and Molecular Dynamics Simulation. Chemistry and Biodiversity, 21(12). https://doi.org/10.1002/cbdv.202401610
  • Lin, N., Huang, X., Ma, C., & Han, J. (2021). Clinical and pathological findings of chronic actinic dermatitis. Photodermatology Photoimmunology and Photomedicine, 37(4), 313–320. https://doi.org/10.1111/phpp.12654
  • Liu, J., Zhang, W., Zhou, Q., Zhou, Q., Zhang, Y., & Zhu, L. (2021). Polycyclic musks in the environment: A review of their concentrations and distribution, ecological effects and behavior, current concerns and future prospects. Critical Reviews in Environmental Science and Technology, 51(4), 323–377. https://doi.org/10.1080/10643389.2020.1724748
  • Maia, E. R., Magalhães, D. R. B., Lerner, D. A., Berthomieu, D., & Bernassau, J.-M. (2014). Quantum Calculation for Musk Molecules Infrared Spectra towards the Understanding of Odor. Advances in Chemistry, 2014, 1–13. https://doi.org/10.1155/2014/398948
  • Mitra, R., Goddard, R., & Pörschke, K. R. (2017). 9,9-Difluorobispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. Inorganic Chemistry, 56(11), 6712–6724. https://doi.org/10.1021/acs.inorgchem.7b00836
  • Nandan, A., Siddiqui, N. A., Singh, C., & Aeri, A. (2021). Occupational and environmental impacts of indoor air pollutant for different occupancy: a review. In Toxicology and Environmental Health Sciences (Vol. 13, Issue 4, pp. 303–322). Korean Society of Environmental Risk Assessment and Health Science. https://doi.org/10.1007/s13530-021-00102-9
  • NIST Chemistry. (2025). Musk ambrette (artificial). https://webbook.nist.gov/cgi/cbook.cgi?ID=C83669&Mask=2017
  • Parker, R. D., Buehler, E. V., & Newmann, A. (1986). Phototoxicity, photoallergy, and contact sensitization of nitro musk perfume raw materials. Contact Dermatitis, 14(2), 103–109. https://doi.org/10.1111/J.1600-0536.1986.TB01169.X;PAGEGROUP:STRING:PUBLICATION
  • Schmidt, F., Wenzel, J., Halland, N., Güssregen, S., Delafoy, L., & Czich, A. (2019). Computational Investigation of Drug Phototoxicity: Photosafety Assessment, Photo-Toxophore Identification, and Machine Learning. Chemical Research in Toxicology, 32(11), 2338–2352. https://doi.org/10.1021/acs.chemrestox.9b00338
  • Wang, S., Cao, X., Miao, D., Pang, L., & Li, J. (2024). A Review of In-Flight Thermal Comfort and Air Quality Status in Civil Aircraft Cabin Environments. Buildings, 14(7). https://doi.org/10.3390/buildings14072001
  • Weerasinghe, M. A. S. N., Nwoko, T., & Konkolewicz, D. (2025). Polymers and light: a love-hate relationship. In Chemical Science (Vol. 16, Issue 13, pp. 5326–5352). Royal Society of Chemistry. https://doi.org/10.1039/d5sc00997a
  • Wojnarowska, F., & Calnan, C. D. (1986). Contact and photocontact allergy to musk ambrette. British Journal of Dermatology, 114(6), 667–675. https://doi.org/10.1111/J.1365-2133.1986.TB04874.X
  • Yin, Y., He, J., Zhao, L., Pei, J., Yang, X., Sun, Y., Cui, X., Lin, C.-H., Wei, D., & Chen, Q. (2022). Identification of Key
  • Volatile Organic Compounds in Aircraft Cabins and Associated Inhalation Health Risks. Environment International, 158(106999), 1–40.
  • Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. http://www.springerplus.com/content/2/1/398
There are 22 citations in total.

Details

Primary Language English
Subjects Air Transportation and Freight Services, Transportation, Logistics and Supply Chains (Other)
Journal Section Research Article
Authors

Cahit Bilgi

Submission Date November 15, 2025
Acceptance Date December 23, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 2 Issue: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue

Cite

APA Bilgi, C. (2025). Spectroscopic Identification of Musk Ambrette as a VOC and Phototoxicity Marker in Aircraft Cabin Materials. Ege Üniversitesi Ulaştırma Yönetimi Araştırmaları Dergisi, 2(Aviation Technologies and Applications Conference (ATAConf’25) Special Issue), 112-130.