Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 66 - 72, 16.12.2019

Abstract

References

  • Gulledge, A.T. and D.B. Jaffe, Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. Journal of Neuroscience, 1998. 18(21): p. 9139-9151.
  • Tzschentke, T., Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in neurobiology, 2001. 63(3): p. 241-320.
  • Goldman-Rakic, P.S., E.C. Muly III, and G.V. Williams, D₁ receptors in prefrontal cells and circuits. Brain Research Reviews, 2000.
  • Nicola, S.M., D.J. Surmeier, and R.C. Malenka, Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual review of neuroscience, 2000. 23(1): p. 185-215.
  • Santos-García, D., M. Prieto-Formoso, and R. de la Fuente-Fernández, Levodopa dosage determines adherence to long-acting dopamine agonists in Parkinson's disease. Journal of the neurological sciences, 2012. 318(1-2): p. 90-93.
  • Barforushi, M.M., S. Safari, and M. Monajjemi, Nano Biotechnology Study of X-Dopamine Complexes (X= Co2+, Au3+, Pt2+, and Pd2+). Journal of Computational and Theoretical Nanoscience, 2015. 12(10): p. 3058-3065.
  • Aliste, M.P., Theoretical study of dopamine. Application of the HSAB principle to the study of drug–receptor interactions. Journal of Molecular Structure: THEOCHEM, 2000. 507(1-3): p. 1-10.
  • Fellous, J.-M. and R. Suri, Dopamine, roles of. The handbook of brain theory and neural networks, 2003: p. 361-365.
  • Mehdizadeh Barforushi, M. and K. Zare, A Theoretical Study on Dopamine: Geometry, energies and NMR. Journal of Physical & Theoretical Chemistry, 2014. 11(2): p. 57-61.
  • Gingrich, J.A. and M.G. Caron, Recent advances in the molecular biology of dopamine receptors. Annual review of neuroscience, 1993. 16(1): p. 299-321.
  • Barforushi, M.M., NMR and NBO investigation of Dopamine properties in point view of Brain activities. Oriental Journal of Chemistry, 2014. 30(4): p. 1823-1840.
  • Raghu, P., et al., A novel horseradish peroxidase biosensor towards the detection of dopamine: A voltammetric study. Enzyme and microbial technology, 2014. 57: p. 8-15.
  • Sun, W., et al., Poly (methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Analytica chimica acta, 2012. 751: p. 59-65.
  • Yu, D., et al., A novel electrochemical sensor for determination of dopamine based on AuNPs@ SiO2 core-shell imprinted composite. Biosensors and Bioelectronics, 2012. 38(1): p. 270-277.
  • Zhai, C., et al., Experimental and theoretical study on the interaction of dopamine hydrochloride with H2O. Journal of Molecular Liquids, 2016. 215: p. 481-485.
  • Chen, S., K.Y. Tai, and R.D. Webster, The Effect of the Buffering Capacity of the Supporting Electrolyte on the Electrochemical Oxidation of Dopamine and 4‐Methylcatechol in Aqueous and Nonaqueous Solvents. Chemistry–An Asian Journal, 2011. 6(6): p. 1492-1499.
  • Mamand, D., Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2(1): p. 31-35.
  • Frisch, M.J., J.A. Pople, and J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of chemical physics, 1984. 80(7): p. 3265-3269.
  • Gh, A.B., Ab initio study, investigation of NMR shielding tensors, NBO and vibrational frequency of catechol thioethers. Bulletin of the Chemical Society of Ethiopia, 2010. 24(2).
  • Nagy, P.I., G. Alagona, and C. Ghio, Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution. Journal of the American Chemical Society, 1999. 121(20): p. 4804-4815.
  • Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
  • Tammer, M., G. Sokrates: Infrared and Raman characteristic group frequencies: tables and charts. 2004, Springer.
  • Jeyavijayan, S. and M. Arivazhagan, Study of density functional theory and vibrational spectra of hypoxanthine. 2010.
  • Krishnakumar, V. and R.J. Xavier, Normal coordinate analysis of 2-mercapto and 4, 6-dihydroxy-2-mercapto pyrimidines. 2003.
  • Srivastava, A. and V. Singh, Theoretical and experimental studies of vibrational spectra of naphthalene and its cation. 2007.
  • Wilson, E.B., J.C. Decius, and P.C. Cross, Molecular vibrations: the theory of infrared and Raman vibrational spectra. 1980: Courier Corporation.
  • Ramalingam, S., et al., FTIR and FTRaman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 75(4): p. 1308-1314.
  • Nagabalasubramanian, P., et al., FTIR and FT Raman spectra, vibrational assignments, ab initio, DFT and normal coordinate analysis of α, α dichlorotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 73(2): p. 277-280.
  • Nagabalasubramanian, P., S. Periandy, and S. Mohan, Ab initio HF and DFT simulations, FT-IR and FT-Raman vibrational analysis of α-chlorotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 77(1): p. 150-159.
  • Krishnakumar, V., V. Balachandran, and T. Chithambarathanu, Density functional theory study of the FT-IR spectra of phthalimide and N-bromophthalimide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005. 62(4-5): p. 918-925.
  • Besson, G. and V. Drits, Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis. Clays and Clay Minerals, 1997. 45(2): p. 170-183.
  • Zviagina, B.B., et al., Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 2004. 52(4): p. 399-410.
  • Sun, Q., The Raman OH stretching bands of liquid water. Vibrational Spectroscopy, 2009. 51(2): p. 213-217.
  • Serra-Crespo, P., et al., Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. Langmuir, 2012. 28(35): p. 12916-12922.
  • Subramanian, N., N. Sundaraganesan, and J. Jayabharathi, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 76(2): p. 259-269.
  • Ditchfield, R., Molecular orbital theory of magnetic shielding and magnetic susceptibility. The Journal of Chemical Physics, 1972. 56(11): p. 5688-5691.

A Theoretical Study on Dopamine Molecule

Year 2019, Volume: 2 Issue: 2, 66 - 72, 16.12.2019

Abstract

Now-days the computational quantum theory especially Hartree-Fock (HF) and Density functional theory (DFT) is an important role in physical chemistry. Dopamine is a hormone neurotransmitter, why understanding the stability, reactivity and structure analysis are important. In this study, before calculation quantum mechanical we optimize the energy band gaps using different basis sets for both DFT and HF methods, then we select 6-31G* at DFT method for our dopamine molecule. IR and NMR spectra with some reference are investigated according to this method.

References

  • Gulledge, A.T. and D.B. Jaffe, Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. Journal of Neuroscience, 1998. 18(21): p. 9139-9151.
  • Tzschentke, T., Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in neurobiology, 2001. 63(3): p. 241-320.
  • Goldman-Rakic, P.S., E.C. Muly III, and G.V. Williams, D₁ receptors in prefrontal cells and circuits. Brain Research Reviews, 2000.
  • Nicola, S.M., D.J. Surmeier, and R.C. Malenka, Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual review of neuroscience, 2000. 23(1): p. 185-215.
  • Santos-García, D., M. Prieto-Formoso, and R. de la Fuente-Fernández, Levodopa dosage determines adherence to long-acting dopamine agonists in Parkinson's disease. Journal of the neurological sciences, 2012. 318(1-2): p. 90-93.
  • Barforushi, M.M., S. Safari, and M. Monajjemi, Nano Biotechnology Study of X-Dopamine Complexes (X= Co2+, Au3+, Pt2+, and Pd2+). Journal of Computational and Theoretical Nanoscience, 2015. 12(10): p. 3058-3065.
  • Aliste, M.P., Theoretical study of dopamine. Application of the HSAB principle to the study of drug–receptor interactions. Journal of Molecular Structure: THEOCHEM, 2000. 507(1-3): p. 1-10.
  • Fellous, J.-M. and R. Suri, Dopamine, roles of. The handbook of brain theory and neural networks, 2003: p. 361-365.
  • Mehdizadeh Barforushi, M. and K. Zare, A Theoretical Study on Dopamine: Geometry, energies and NMR. Journal of Physical & Theoretical Chemistry, 2014. 11(2): p. 57-61.
  • Gingrich, J.A. and M.G. Caron, Recent advances in the molecular biology of dopamine receptors. Annual review of neuroscience, 1993. 16(1): p. 299-321.
  • Barforushi, M.M., NMR and NBO investigation of Dopamine properties in point view of Brain activities. Oriental Journal of Chemistry, 2014. 30(4): p. 1823-1840.
  • Raghu, P., et al., A novel horseradish peroxidase biosensor towards the detection of dopamine: A voltammetric study. Enzyme and microbial technology, 2014. 57: p. 8-15.
  • Sun, W., et al., Poly (methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Analytica chimica acta, 2012. 751: p. 59-65.
  • Yu, D., et al., A novel electrochemical sensor for determination of dopamine based on AuNPs@ SiO2 core-shell imprinted composite. Biosensors and Bioelectronics, 2012. 38(1): p. 270-277.
  • Zhai, C., et al., Experimental and theoretical study on the interaction of dopamine hydrochloride with H2O. Journal of Molecular Liquids, 2016. 215: p. 481-485.
  • Chen, S., K.Y. Tai, and R.D. Webster, The Effect of the Buffering Capacity of the Supporting Electrolyte on the Electrochemical Oxidation of Dopamine and 4‐Methylcatechol in Aqueous and Nonaqueous Solvents. Chemistry–An Asian Journal, 2011. 6(6): p. 1492-1499.
  • Mamand, D., Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2(1): p. 31-35.
  • Frisch, M.J., J.A. Pople, and J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of chemical physics, 1984. 80(7): p. 3265-3269.
  • Gh, A.B., Ab initio study, investigation of NMR shielding tensors, NBO and vibrational frequency of catechol thioethers. Bulletin of the Chemical Society of Ethiopia, 2010. 24(2).
  • Nagy, P.I., G. Alagona, and C. Ghio, Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution. Journal of the American Chemical Society, 1999. 121(20): p. 4804-4815.
  • Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
  • Tammer, M., G. Sokrates: Infrared and Raman characteristic group frequencies: tables and charts. 2004, Springer.
  • Jeyavijayan, S. and M. Arivazhagan, Study of density functional theory and vibrational spectra of hypoxanthine. 2010.
  • Krishnakumar, V. and R.J. Xavier, Normal coordinate analysis of 2-mercapto and 4, 6-dihydroxy-2-mercapto pyrimidines. 2003.
  • Srivastava, A. and V. Singh, Theoretical and experimental studies of vibrational spectra of naphthalene and its cation. 2007.
  • Wilson, E.B., J.C. Decius, and P.C. Cross, Molecular vibrations: the theory of infrared and Raman vibrational spectra. 1980: Courier Corporation.
  • Ramalingam, S., et al., FTIR and FTRaman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 75(4): p. 1308-1314.
  • Nagabalasubramanian, P., et al., FTIR and FT Raman spectra, vibrational assignments, ab initio, DFT and normal coordinate analysis of α, α dichlorotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 73(2): p. 277-280.
  • Nagabalasubramanian, P., S. Periandy, and S. Mohan, Ab initio HF and DFT simulations, FT-IR and FT-Raman vibrational analysis of α-chlorotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 77(1): p. 150-159.
  • Krishnakumar, V., V. Balachandran, and T. Chithambarathanu, Density functional theory study of the FT-IR spectra of phthalimide and N-bromophthalimide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005. 62(4-5): p. 918-925.
  • Besson, G. and V. Drits, Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis. Clays and Clay Minerals, 1997. 45(2): p. 170-183.
  • Zviagina, B.B., et al., Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 2004. 52(4): p. 399-410.
  • Sun, Q., The Raman OH stretching bands of liquid water. Vibrational Spectroscopy, 2009. 51(2): p. 213-217.
  • Serra-Crespo, P., et al., Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. Langmuir, 2012. 28(35): p. 12916-12922.
  • Subramanian, N., N. Sundaraganesan, and J. Jayabharathi, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 76(2): p. 259-269.
  • Ditchfield, R., Molecular orbital theory of magnetic shielding and magnetic susceptibility. The Journal of Chemical Physics, 1972. 56(11): p. 5688-5691.
There are 36 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Lana Ahmed

Rebaz Omer 0000-0001-7468-516X

Publication Date December 16, 2019
Submission Date December 2, 2019
Acceptance Date December 11, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Ahmed, L., & Omer, R. (2019). A Theoretical Study on Dopamine Molecule. Journal of Physical Chemistry and Functional Materials, 2(2), 66-72.
AMA Ahmed L, Omer R. A Theoretical Study on Dopamine Molecule. Journal of Physical Chemistry and Functional Materials. December 2019;2(2):66-72.
Chicago Ahmed, Lana, and Rebaz Omer. “A Theoretical Study on Dopamine Molecule”. Journal of Physical Chemistry and Functional Materials 2, no. 2 (December 2019): 66-72.
EndNote Ahmed L, Omer R (December 1, 2019) A Theoretical Study on Dopamine Molecule. Journal of Physical Chemistry and Functional Materials 2 2 66–72.
IEEE L. Ahmed and R. Omer, “A Theoretical Study on Dopamine Molecule”, Journal of Physical Chemistry and Functional Materials, vol. 2, no. 2, pp. 66–72, 2019.
ISNAD Ahmed, Lana - Omer, Rebaz. “A Theoretical Study on Dopamine Molecule”. Journal of Physical Chemistry and Functional Materials 2/2 (December 2019), 66-72.
JAMA Ahmed L, Omer R. A Theoretical Study on Dopamine Molecule. Journal of Physical Chemistry and Functional Materials. 2019;2:66–72.
MLA Ahmed, Lana and Rebaz Omer. “A Theoretical Study on Dopamine Molecule”. Journal of Physical Chemistry and Functional Materials, vol. 2, no. 2, 2019, pp. 66-72.
Vancouver Ahmed L, Omer R. A Theoretical Study on Dopamine Molecule. Journal of Physical Chemistry and Functional Materials. 2019;2(2):66-72.