Review Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 112 - 123, 18.12.2024
https://doi.org/10.54565/jphcfum.1537050

Abstract

References

  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • S. S. Mohammed, R. A. Qadir, A. Hassan, A. Mohammedamin and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39.
  • B. M. Ibrahım, S. S. Mohammed and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials.6(2):40-50.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • U. Mallik and V. Sampath. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. Journal of Alloys and Compounds. 2009;469(1-2):156-163.
  • Y. Sutou, R. Kainuma and K. Ishida. Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Materials Science and Engineering: A. 1999;273:375-379. doi: https://doi.org/10.1016/S0921-5093(99)00301-9.
  • Y. Sutou, T. Omori, T. Okamoto, R. Kainuma and K. Ishida. Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. Le Journal de Physique IV. 2001;11(PR8):Pr8-185-Pr8-190. doi:https://doi.org/10.1051/jp4:2001832.
  • İ. N. QADER, K. Mediha, F. DAGDELEN and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri Journal of Science and Engineering. 2019;6(3):755-788.
  • J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • P. Kumar and D. Lagoudas. Introduction to shape memory alloys. Shape memory alloys. Springer; 2008. p. 1-51.
  • I. N. Qader, M. Kök and F. Dağdelen. Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter. 2019;553:1-5. doi:https://doi.org/10.1016/j.physb.2018.10.021.
  • W. D. Callister and D. G. Rethwisch. Materials science and engineering: an introduction. John wiley & sons New York; 2007.
  • W. Huang. Shape memory alloys and their application to actuators for deployable structures. 1998.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. Mohammed, F. Dağdelen and I. N. Qader. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138.
  • W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials Today. 2010;13(7-8):54-61.
  • F. Dagdelen, M. Aldalawi, M. Kok and I. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66.
  • K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
  • E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry.1-8.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu 84− x Al 13 Ni 3 Hf x shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • U. Mallik and V. Sampath. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Materials Science and Engineering: A. 2008;481:680-683.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44(4):1167-1175.
  • D. C. Lagoudas. Shape memory alloys: modeling and engineering applications. Springer; 2008.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • A. Ziolkowski. Pseudoelasticity of shape memory alloys: theory and experimental studies. Butterworth-Heinemann; 2015.
  • S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • C. Chluba, W. Ge, R. L. de Miranda, J. Strobel, L. Kienle, E. Quandt and M. Wuttig. Ultralow-fatigue shape memory alloy films. Science. 2015;348(6238):1004-1007.
  • A. Ramalohary, P. Castany, P. Laheurte, F. Prima and T. Gloriant. Superelastic property induced by low-temperature heating of a shape memory Ti–24Nb–0.5 Si biomedical alloy. Scripta Materialia. 2014;88:25-28.
  • R. Dasgupta, A. K. Jain, P. Kumar, S. Hussain and A. Pandey. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys. Journal of alloys and compounds. 2015;620:60-66.
  • R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research. 2014;29(16):1681.
  • S. N. S. Al-Humairi. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advances in Engineering Materials and Metallurgy. IntechOpen; 2019.
  • F. Dagdelen, M. Kanca and M. Kok. Effects of Different Quenching Treatments on Thermal Properties and Microstructure in Quaternary Cu-Based HTSMA. Physics of Metals and Metallography. 2019;120(13):1378-1383.
  • Y. Sutou, T. Omori, J. Wang, R. Kainuma and K. Ishida. Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Materials Science and Engineering: A. 2004;378(1-2):278-282.
  • R. Kainuma, S. Takahashi and K. Ishida. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. Metallurgical and Materials Transactions A. 1996;27(8):2187-2195.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • J. Guilemany, F. Peregrin, F. Lovey, N. Llorca and E. Cesari. TEM study of β and martensite in Cu Al Mn shape memory alloys. Materials Characterization. 1991;26(1):23-28. M. Blazquez, C. L. Del Castillo and C. Gomez. Influence of the composition and maximum cycling temperature on the microstructure of Cu-Al-Mn shape memory alloys. Metallography. 1989;23(2):119-133.
  • C. L. del Castillo, B. Mellor, M. Blazquez and C. Gomez. The influence of composition and grain size on the martensitic transformation temperatures of Cu Al Mn shape memory alloys. Scripta metallurgica. 1987;21(12):1711-1716.
  • J. Dutkiewicz, J. Pons and E. Cesari. Effect of γ precipitates on the martensitic transformation in Cu Al Mn alloys. Materials Science and Engineering: A. 1992;158(1):119-128.
  • G. Zak, A. Kneissl and G. Zatulskij. Shape memory effect in cryogenic Cu-Al-Mn alloys. Scripta Materialia. 1996;34(3).
  • E. Obradó, C. Frontera, L. Mañosa and A. Planes. Order-disorder transitions of Cu-Al-Mn shape-memory alloys. Physical Review B. 1998;58(21):14245.
  • Y. Yafet. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Physical Review B. 1987;36(7):3948.
  • C. Kittel, P. McEuen and P. McEuen. Introduction to solid state physics. Wiley New York; 1996.
  • W. J. Buehler, J. Gilfrich and R. Wiley. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics. 1963;34(5):1475-1477.
  • K. Andrianesis, A. Tzes, E. Kolyvas and Y. Koveos. Development and Control of an Ultra-Lightweight Anthropomorphic Modular Finger Actuated by Shape Memory Alloy Wires.
  • V. Sampath and U. Mallik, editors. Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy. European Symposium on Martensitic Transformations; 2009: EDP Sciences.
  • G.-L. Song and Z. Xu. Surface processing and alloying to improve the corrosion resistance of magnesium (Mg) alloys. Corrosion Prevention of Magnesium Alloys. Elsevier; 2013. p. 110-134.
  • K. Lu, W. Wei and J. Wang. Microhardness and fracture properties of nanocrystalline Ni P alloy. Scripta metallurgica et materialia. 1990;24(12):2319-2323.
  • X. Qin, X. Wu and L. Zhang. The microhardness of nanocrystalline silver. Nanostructured materials. 1995;5(1):101-110.
  • P. Kumar, A. K. Jain, S. Hussain, A. Pandey and R. Dasgupta. Changes in the properties of Cu-Al-Mn shape memory alloy due to quaternary addition of different elements. Matéria (Rio de Janeiro). 2015;20(1):284-292.
  • A. Pandey, S. Hussain, P. Nair and R. Dasgupta. Influence of niobium and silver on mechanical properties and shape memory behavior of Cu-12Al-4Mn alloys. Journal of alloys and compounds. 2020:155266. doi: https://doi.org/10.1016/j.jallcom.2020.155266.
  • J. Souza, D. Modesto and R. Silva. Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. Journal of Thermal Analysis and Calorimetry. 2019;138(5):3517-3524.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • R. F. Alves, R. A. Raimundo, B. A. Lima, D. F. Oliveira, R. A. de Santana, R. M. Gomes and C. J. de Araújo. Effect of small vanadium addition on the microstructure, transformation temperatures, and corrosion behavior of a Cu72Al17Mn11 shape memory alloy. Journal of Materials Research and Technology. 2023;24:6009-6021.
  • A. H. Haleema, H. H. J. Al-Deenb and D. A. Alic. Effects of quaternary alloying additions on the behaviour of Cu-8% Al-9% Mn alloy.
  • L. Vrsalović, I. Ivanić, S. Kožuh, B. Kosec, M. Bizjak, S. Gudić and M. Gojić, editors. Corrosion behavior of CuAlMn and CuAlMnNi alloy in 0.9% NaCl solution. 18th International Foundryman Conference, Coexistence of material science and sustainable technology in economic growth; 2019: University of Zagreb Faculty of Metallurgy.

A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material

Year 2024, Volume: 7 Issue: 2, 112 - 123, 18.12.2024
https://doi.org/10.54565/jphcfum.1537050

Abstract

One of the best type of smart materials is magnetic shape memory alloy due to their unique combination of magnetic and shape memory properties that this combination of these two properties has given them the opportunity to have more applications in modern technology than many other types of materials. Among all types of magnetic shape memory alloy materials Cu-Al-Mn alloy is more focused on by researchers and scientists because it has some unique properties. Also, the behaviors of Cu-Al-Mn alloy can improve by some techniques, one of these techniques is adding the fourth element into it. In this study the structure and some important properties of Cu-Al-Mn magnetic shape memory alloy material was studied and the effect of adding element by alloying process on the behaviors of Cu-Al-Mn magnetic shape memory alloy material such as transformation-temperature, grain size, superelastisity, and hardness has been reviewed.

References

  • R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A review on NiTiCu shape memory alloys: manufacturing and characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
  • S. S. Mohammed, R. A. Qadir, A. Hassan, A. Mohammedamin and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39.
  • B. M. Ibrahım, S. S. Mohammed and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials.6(2):40-50.
  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • U. Mallik and V. Sampath. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. Journal of Alloys and Compounds. 2009;469(1-2):156-163.
  • Y. Sutou, R. Kainuma and K. Ishida. Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Materials Science and Engineering: A. 1999;273:375-379. doi: https://doi.org/10.1016/S0921-5093(99)00301-9.
  • Y. Sutou, T. Omori, T. Okamoto, R. Kainuma and K. Ishida. Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. Le Journal de Physique IV. 2001;11(PR8):Pr8-185-Pr8-190. doi:https://doi.org/10.1051/jp4:2001832.
  • İ. N. QADER, K. Mediha, F. DAGDELEN and Y. AYDOĞDU. A review of smart materials: researches and applications. El-Cezeri Journal of Science and Engineering. 2019;6(3):755-788.
  • J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • P. Kumar and D. Lagoudas. Introduction to shape memory alloys. Shape memory alloys. Springer; 2008. p. 1-51.
  • I. N. Qader, M. Kök and F. Dağdelen. Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter. 2019;553:1-5. doi:https://doi.org/10.1016/j.physb.2018.10.021.
  • W. D. Callister and D. G. Rethwisch. Materials science and engineering: an introduction. John wiley & sons New York; 2007.
  • W. Huang. Shape memory alloys and their application to actuators for deployable structures. 1998.
  • S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • S. Mohammed, F. Dağdelen and I. N. Qader. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138.
  • W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials Today. 2010;13(7-8):54-61.
  • F. Dagdelen, M. Aldalawi, M. Kok and I. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66.
  • K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
  • E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry.1-8.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu 84− x Al 13 Ni 3 Hf x shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • U. Mallik and V. Sampath. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Materials Science and Engineering: A. 2008;481:680-683.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44(4):1167-1175.
  • D. C. Lagoudas. Shape memory alloys: modeling and engineering applications. Springer; 2008.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • A. Ziolkowski. Pseudoelasticity of shape memory alloys: theory and experimental studies. Butterworth-Heinemann; 2015.
  • S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A review study on biocompatible improvements of NiTi-based shape memory alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130.
  • C. Chluba, W. Ge, R. L. de Miranda, J. Strobel, L. Kienle, E. Quandt and M. Wuttig. Ultralow-fatigue shape memory alloy films. Science. 2015;348(6238):1004-1007.
  • A. Ramalohary, P. Castany, P. Laheurte, F. Prima and T. Gloriant. Superelastic property induced by low-temperature heating of a shape memory Ti–24Nb–0.5 Si biomedical alloy. Scripta Materialia. 2014;88:25-28.
  • R. Dasgupta, A. K. Jain, P. Kumar, S. Hussain and A. Pandey. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys. Journal of alloys and compounds. 2015;620:60-66.
  • R. Dasgupta. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research. 2014;29(16):1681.
  • S. N. S. Al-Humairi. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. Recent Advances in Engineering Materials and Metallurgy. IntechOpen; 2019.
  • F. Dagdelen, M. Kanca and M. Kok. Effects of Different Quenching Treatments on Thermal Properties and Microstructure in Quaternary Cu-Based HTSMA. Physics of Metals and Metallography. 2019;120(13):1378-1383.
  • Y. Sutou, T. Omori, J. Wang, R. Kainuma and K. Ishida. Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Materials Science and Engineering: A. 2004;378(1-2):278-282.
  • R. Kainuma, S. Takahashi and K. Ishida. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. Metallurgical and Materials Transactions A. 1996;27(8):2187-2195.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • J. Guilemany, F. Peregrin, F. Lovey, N. Llorca and E. Cesari. TEM study of β and martensite in Cu Al Mn shape memory alloys. Materials Characterization. 1991;26(1):23-28. M. Blazquez, C. L. Del Castillo and C. Gomez. Influence of the composition and maximum cycling temperature on the microstructure of Cu-Al-Mn shape memory alloys. Metallography. 1989;23(2):119-133.
  • C. L. del Castillo, B. Mellor, M. Blazquez and C. Gomez. The influence of composition and grain size on the martensitic transformation temperatures of Cu Al Mn shape memory alloys. Scripta metallurgica. 1987;21(12):1711-1716.
  • J. Dutkiewicz, J. Pons and E. Cesari. Effect of γ precipitates on the martensitic transformation in Cu Al Mn alloys. Materials Science and Engineering: A. 1992;158(1):119-128.
  • G. Zak, A. Kneissl and G. Zatulskij. Shape memory effect in cryogenic Cu-Al-Mn alloys. Scripta Materialia. 1996;34(3).
  • E. Obradó, C. Frontera, L. Mañosa and A. Planes. Order-disorder transitions of Cu-Al-Mn shape-memory alloys. Physical Review B. 1998;58(21):14245.
  • Y. Yafet. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Physical Review B. 1987;36(7):3948.
  • C. Kittel, P. McEuen and P. McEuen. Introduction to solid state physics. Wiley New York; 1996.
  • W. J. Buehler, J. Gilfrich and R. Wiley. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics. 1963;34(5):1475-1477.
  • K. Andrianesis, A. Tzes, E. Kolyvas and Y. Koveos. Development and Control of an Ultra-Lightweight Anthropomorphic Modular Finger Actuated by Shape Memory Alloy Wires.
  • V. Sampath and U. Mallik, editors. Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy. European Symposium on Martensitic Transformations; 2009: EDP Sciences.
  • G.-L. Song and Z. Xu. Surface processing and alloying to improve the corrosion resistance of magnesium (Mg) alloys. Corrosion Prevention of Magnesium Alloys. Elsevier; 2013. p. 110-134.
  • K. Lu, W. Wei and J. Wang. Microhardness and fracture properties of nanocrystalline Ni P alloy. Scripta metallurgica et materialia. 1990;24(12):2319-2323.
  • X. Qin, X. Wu and L. Zhang. The microhardness of nanocrystalline silver. Nanostructured materials. 1995;5(1):101-110.
  • P. Kumar, A. K. Jain, S. Hussain, A. Pandey and R. Dasgupta. Changes in the properties of Cu-Al-Mn shape memory alloy due to quaternary addition of different elements. Matéria (Rio de Janeiro). 2015;20(1):284-292.
  • A. Pandey, S. Hussain, P. Nair and R. Dasgupta. Influence of niobium and silver on mechanical properties and shape memory behavior of Cu-12Al-4Mn alloys. Journal of alloys and compounds. 2020:155266. doi: https://doi.org/10.1016/j.jallcom.2020.155266.
  • J. Souza, D. Modesto and R. Silva. Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. Journal of Thermal Analysis and Calorimetry. 2019;138(5):3517-3524.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • R. F. Alves, R. A. Raimundo, B. A. Lima, D. F. Oliveira, R. A. de Santana, R. M. Gomes and C. J. de Araújo. Effect of small vanadium addition on the microstructure, transformation temperatures, and corrosion behavior of a Cu72Al17Mn11 shape memory alloy. Journal of Materials Research and Technology. 2023;24:6009-6021.
  • A. H. Haleema, H. H. J. Al-Deenb and D. A. Alic. Effects of quaternary alloying additions on the behaviour of Cu-8% Al-9% Mn alloy.
  • L. Vrsalović, I. Ivanić, S. Kožuh, B. Kosec, M. Bizjak, S. Gudić and M. Gojić, editors. Corrosion behavior of CuAlMn and CuAlMnNi alloy in 0.9% NaCl solution. 18th International Foundryman Conference, Coexistence of material science and sustainable technology in economic growth; 2019: University of Zagreb Faculty of Metallurgy.
There are 60 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Safar Saeed Mohammed 0000-0002-2794-8024

Rezhaw Abdalla Qadir 0009-0007-8052-4208

Ayoub Sabir Karim 0000-0003-1251-3324

Mediha Kök 0000-0001-7404-4311

Publication Date December 18, 2024
Submission Date August 21, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Mohammed, S. S., Qadir, R. A., Karim, A. S., Kök, M. (2024). A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials, 7(2), 112-123. https://doi.org/10.54565/jphcfum.1537050
AMA Mohammed SS, Qadir RA, Karim AS, Kök M. A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):112-123. doi:10.54565/jphcfum.1537050
Chicago Mohammed, Safar Saeed, Rezhaw Abdalla Qadir, Ayoub Sabir Karim, and Mediha Kök. “A Review on the Effect of Alloying Element on Physical Properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 112-23. https://doi.org/10.54565/jphcfum.1537050.
EndNote Mohammed SS, Qadir RA, Karim AS, Kök M (December 1, 2024) A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials 7 2 112–123.
IEEE S. S. Mohammed, R. A. Qadir, A. S. Karim, and M. Kök, “A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 112–123, 2024, doi: 10.54565/jphcfum.1537050.
ISNAD Mohammed, Safar Saeed et al. “A Review on the Effect of Alloying Element on Physical Properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 112-123. https://doi.org/10.54565/jphcfum.1537050.
JAMA Mohammed SS, Qadir RA, Karim AS, Kök M. A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials. 2024;7:112–123.
MLA Mohammed, Safar Saeed et al. “A Review on the Effect of Alloying Element on Physical Properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 112-23, doi:10.54565/jphcfum.1537050.
Vancouver Mohammed SS, Qadir RA, Karim AS, Kök M. A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials. 2024;7(2):112-23.