Year 2024,
Volume: 7 Issue: 2, 124 - 128, 18.12.2024
Tankut Ateş
,
Serhat Keser
,
Niyazi Bulut
,
Omer Kaygılı
Project Number
FF.24.03 ve ADEP.24.09
References
- K. Hudda, B. Rathee, M. Wati, S. Ranga and R. TyagI. Some Applications of CeO2 Nanoparticles. Oriental Journal of Chemistry. 2023;39(3):684-693. http://dx.doi.org/10.13005/ojc/390319.
- Z. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu and X. Wang. Unveiling the CeO2 morphology effect in Pd-CeO2/C heterostructures catalysts for formic acid dehydrogenation. Fuel. 2023;346:128333. https://doi.org/10.1016/j.fuel.2023.128333.
- R. Kırkgeçit, H.Ö. Torun, F.K. Dokan and E. Öztürk. Investigation of photochemical properties of La-Er/CeO2 and La-Y/CeO2 composites. Journal of Photochemistry and Photobiology A: Chemistry. 2022;423:113602. https://doi.org/10.1016/j.jphotochem.2021.113602.
- T. Ates. Synthesis and characterization of Ag-doped CeO2 powders. Journal of the Australian Ceramic Society. 2021;57(2):615-623. https://doi.org/10.1007/s41779-021-00565-6.
- M.Ç. Yurtsever and G. Güldağ. TiO2, CeO2, and TiO2–CeO2 nanoparticles incorporated 2.5 D chitosan hydrogels: Gelation behavior and cytocompatibility. Journal of the Mechanical Behavior of Biomedical Materials. 2023;146:106088. https://doi.org/10.1016/j.jmbbm.2023.106088.
- Q. Fang and X. Liang. CeO2–Al2O3, CeO2–SiO2, CeO2–TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Advances. 2012;2(12):5370-5375. https://doi.org/10.1039/C2RA01331B.
- M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
- K.Q. Liu, C.B. Wu and W.Q. Kang. Preparation of CeO2-PVA composite film based on in-situ generation of nano CeO2 particles. Optical Materials. 2024;148:114840. https://doi.org/10.1016/j.optmat.2024.114840.
- S. Paydar, B. Zhu, J. Shi, N. Akbar, Q.A. Islam, S. Yun, A. Muhammad, M.H. Paydar and Y. Wu. Surfacial proton conducting CeO2 nanosheets. Ceramics International. 2023;49(6):9138-9146. https://doi.org/10.1016/j.ceramint.2022.11.073.
- S.B. Bošković, D.R. Djurović, S.P. Zec, B.Z. Matović, M. Zinkevich and F. Aldinger. Doped and Co-doped CeO2: Preparation and properties. Ceramics international. 2008;34(8):2001-2006. https://doi.org/10.1016/j.ceramint.2007.07.036.
- F.A. Berutti, A.K. Alves, C.P. Bergmann, F.J. Clemens and T. Graule. Synthesis of CeO2 and Y2O3-doped CeO2 composite fibers by electrospinning. Particulate Science and Technology. 2009;27(3):203-209. https://doi.org/10.1080/02726350902921681.
- M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
- Y.G. Kim and S.B. Kim. Microwave Sintering of Gd-Doped CeO2 Powder. Journal of the Korean Ceramic Society. 2007;44(3):182. https://doi.org/10.4191/kcers.2007.44.3.182.
- S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn and S. Maensiri. Ferromagnetic induced in Cr-doped CeO2 particles. Microelectronic engineering. 2014;126:93-98. https://doi.org/10.1016/j.mee.2014.06.028.
- S. Ramesh. Transport properties of Sm doped CeO2 ceramics. Processing and Application of Ceramics. 2021;15(4):366-373. https://doi.org/10.2298/PAC2104366R.
- B. He, Y. Li, H.Y. Zhang, D.L. Wu, L.H. Liang and H. Wei. Phase transformation of ZrO2 doped with CeO2. Rare Metals. 2018;37:66-71. https://doi.org/10.1007/s12598-015-0552-z.
- N. Paunović, Z.V. Popović and Z.D. Dohčević-Mitrović. Superparamagnetism in iron-doped CeO2− y nanocrystals. Journal of Physics: Condensed Matter. 2012;24(45):456001. https://doi.org/10.1088/0953-8984/24/45/456001.
- P. Slusser, D. Kumar and A. Tiwari. Unexpected magnetic behavior of Cu-doped CeO2. Applied Physics Letters. 2010;96(14):142506. https://doi.org/10.1063/1.3383238.
- Y. Park, S.K. Kim, D. Pradhan and Y. Sohn. Thermal H 2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2. Reaction Kinetics, Mechanisms and Catalysis. 2014;113:85-100. https://doi.org/10.1007/s11144-014-0757-4.
- P.R. Keating, D.O. Scanlon and G.W. Watson. The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. Chemical Physics Letters. 2014;608:239-243. https://doi.org/10.1016/j.cplett.2014.05.094.
- V. Sharma, K. Eberhardt, R. Sharma and P. Crozier. Nano-scale compositional heterogeneity in pr-doped Ceo2. Microscopy and Microanalysis. 2009;15(S2):700-701. https://doi.org/10.1017/S1431927609098705.
- H. Yamamura, S. Takeda and K. Kakinuma. Dielectric relaxations in the Ca-doped CeO2 system. Journal of the Ceramic Society of Japan. 2007;115(1344):471-474. https://doi.org/10.2109/jcersj2.115.471.
- [23] A. Tian, Z. Mei, L. Wang, G. Liu, Z. Liu, G. Kong, W. Tang and C. Liu. Improved photocatalytic carbon dioxide reduction over Bi-doped CeO2 by strain engineering. Sustainable Energy & Fuels. 2024;8(7):1405-1411. https://doi.org/10.1039/D3SE01680C.
- C. Santra, A. Auroux and B. Chowdhury. Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC advances. 2016;6(51):45330-45342. https://doi.org/10.1039/C6RA05216A.
- E. Pütz, I. Tutzschky, H. Frerichs and W. Tremel. In situ generation of H2O2 using CaO2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO2 nanozymes. Nanoscale. 2023;15(11):5209-5218. https://doi.org/10.1039/D2NR02575B.
- M. Romero-Saez, R. Suresh, N. Benito, S. Rajendran, F. Gracia, C. Navas-Cárdenas, A.K. Priya and M. Soto-Moscoso. Defective Ce3+ associated CeO2 nanoleaves for enhanced CO oxidation. Fuel. 2022;315:122822. https://doi.org/10.1016/j.fuel.2021.122822.
- G. Murugadoss, J. Ma, X. Ning and M.R. Kumar. Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorganic Chemistry Communications. 2019;109:107577. https://doi.org/10.1016/j.inoche.2019.107577.
- T. Umehara, M. Hagiwara and S. Fujihara. Synthesis of hollow and aggregated CeO2: Sm3+ microspheres and their redox-responsive luminescence. Journal of Alloys and Compounds. 2019;787:1074-1081. https://doi.org/10.1016/j.jallcom.2019.02.129.
Synthesis and Characterization of CeO2 samples doped with Bi
Year 2024,
Volume: 7 Issue: 2, 124 - 128, 18.12.2024
Tankut Ateş
,
Serhat Keser
,
Niyazi Bulut
,
Omer Kaygılı
Abstract
In the present paper, the effects of bismuth (Bi) on the structural properties and morphology of cerium dioxide (CeO2) structure. One un-doped and four Bi-doped CeO2 samples were manufactured and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) techniques. The XRD and FTIR results confirmed the formation of the CeO2 structure for each sample without any impurity. The crystallinity, average crystallite size and lattice parameter were affected by Bi-content. The amount of the additive of Bi affected the morphology of the as-produced samples.
Supporting Institution
The Management Unit of Scientific Research Projects of Firat University (FUBAP), COST, ARDEP
Project Number
FF.24.03 ve ADEP.24.09
Thanks
N.B is grateful for support from the Poland National Science Foundation (NAWA) Grand and also the COST actions CA21101 and CA22148. This work was supported by the Management Unit of Scientific Research Projects of Firat University (FUBAP) (Project Number: FF.24.03 and ADEP.24.09).
References
- K. Hudda, B. Rathee, M. Wati, S. Ranga and R. TyagI. Some Applications of CeO2 Nanoparticles. Oriental Journal of Chemistry. 2023;39(3):684-693. http://dx.doi.org/10.13005/ojc/390319.
- Z. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu and X. Wang. Unveiling the CeO2 morphology effect in Pd-CeO2/C heterostructures catalysts for formic acid dehydrogenation. Fuel. 2023;346:128333. https://doi.org/10.1016/j.fuel.2023.128333.
- R. Kırkgeçit, H.Ö. Torun, F.K. Dokan and E. Öztürk. Investigation of photochemical properties of La-Er/CeO2 and La-Y/CeO2 composites. Journal of Photochemistry and Photobiology A: Chemistry. 2022;423:113602. https://doi.org/10.1016/j.jphotochem.2021.113602.
- T. Ates. Synthesis and characterization of Ag-doped CeO2 powders. Journal of the Australian Ceramic Society. 2021;57(2):615-623. https://doi.org/10.1007/s41779-021-00565-6.
- M.Ç. Yurtsever and G. Güldağ. TiO2, CeO2, and TiO2–CeO2 nanoparticles incorporated 2.5 D chitosan hydrogels: Gelation behavior and cytocompatibility. Journal of the Mechanical Behavior of Biomedical Materials. 2023;146:106088. https://doi.org/10.1016/j.jmbbm.2023.106088.
- Q. Fang and X. Liang. CeO2–Al2O3, CeO2–SiO2, CeO2–TiO2 core-shell spheres: formation mechanisms and UV absorption. RSC Advances. 2012;2(12):5370-5375. https://doi.org/10.1039/C2RA01331B.
- M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
- K.Q. Liu, C.B. Wu and W.Q. Kang. Preparation of CeO2-PVA composite film based on in-situ generation of nano CeO2 particles. Optical Materials. 2024;148:114840. https://doi.org/10.1016/j.optmat.2024.114840.
- S. Paydar, B. Zhu, J. Shi, N. Akbar, Q.A. Islam, S. Yun, A. Muhammad, M.H. Paydar and Y. Wu. Surfacial proton conducting CeO2 nanosheets. Ceramics International. 2023;49(6):9138-9146. https://doi.org/10.1016/j.ceramint.2022.11.073.
- S.B. Bošković, D.R. Djurović, S.P. Zec, B.Z. Matović, M. Zinkevich and F. Aldinger. Doped and Co-doped CeO2: Preparation and properties. Ceramics international. 2008;34(8):2001-2006. https://doi.org/10.1016/j.ceramint.2007.07.036.
- F.A. Berutti, A.K. Alves, C.P. Bergmann, F.J. Clemens and T. Graule. Synthesis of CeO2 and Y2O3-doped CeO2 composite fibers by electrospinning. Particulate Science and Technology. 2009;27(3):203-209. https://doi.org/10.1080/02726350902921681.
- M.S. Pudovkin, O.A. Morozov, S.L. Korableva, R.M. Rakhmatullin, V.V. Semashko, A.K. Ginkel, A.A. Rodionov and A.G. Kiiamov. EPR and optical study of erbium-doped CeO2 and CeO2/CeF3 nanoparticles. Ceramics International. 2024;50(6):9263-9269. https://doi.org/10.1016/j.ceramint.2023.12.242.
- Y.G. Kim and S.B. Kim. Microwave Sintering of Gd-Doped CeO2 Powder. Journal of the Korean Ceramic Society. 2007;44(3):182. https://doi.org/10.4191/kcers.2007.44.3.182.
- S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn and S. Maensiri. Ferromagnetic induced in Cr-doped CeO2 particles. Microelectronic engineering. 2014;126:93-98. https://doi.org/10.1016/j.mee.2014.06.028.
- S. Ramesh. Transport properties of Sm doped CeO2 ceramics. Processing and Application of Ceramics. 2021;15(4):366-373. https://doi.org/10.2298/PAC2104366R.
- B. He, Y. Li, H.Y. Zhang, D.L. Wu, L.H. Liang and H. Wei. Phase transformation of ZrO2 doped with CeO2. Rare Metals. 2018;37:66-71. https://doi.org/10.1007/s12598-015-0552-z.
- N. Paunović, Z.V. Popović and Z.D. Dohčević-Mitrović. Superparamagnetism in iron-doped CeO2− y nanocrystals. Journal of Physics: Condensed Matter. 2012;24(45):456001. https://doi.org/10.1088/0953-8984/24/45/456001.
- P. Slusser, D. Kumar and A. Tiwari. Unexpected magnetic behavior of Cu-doped CeO2. Applied Physics Letters. 2010;96(14):142506. https://doi.org/10.1063/1.3383238.
- Y. Park, S.K. Kim, D. Pradhan and Y. Sohn. Thermal H 2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2. Reaction Kinetics, Mechanisms and Catalysis. 2014;113:85-100. https://doi.org/10.1007/s11144-014-0757-4.
- P.R. Keating, D.O. Scanlon and G.W. Watson. The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. Chemical Physics Letters. 2014;608:239-243. https://doi.org/10.1016/j.cplett.2014.05.094.
- V. Sharma, K. Eberhardt, R. Sharma and P. Crozier. Nano-scale compositional heterogeneity in pr-doped Ceo2. Microscopy and Microanalysis. 2009;15(S2):700-701. https://doi.org/10.1017/S1431927609098705.
- H. Yamamura, S. Takeda and K. Kakinuma. Dielectric relaxations in the Ca-doped CeO2 system. Journal of the Ceramic Society of Japan. 2007;115(1344):471-474. https://doi.org/10.2109/jcersj2.115.471.
- [23] A. Tian, Z. Mei, L. Wang, G. Liu, Z. Liu, G. Kong, W. Tang and C. Liu. Improved photocatalytic carbon dioxide reduction over Bi-doped CeO2 by strain engineering. Sustainable Energy & Fuels. 2024;8(7):1405-1411. https://doi.org/10.1039/D3SE01680C.
- C. Santra, A. Auroux and B. Chowdhury. Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC advances. 2016;6(51):45330-45342. https://doi.org/10.1039/C6RA05216A.
- E. Pütz, I. Tutzschky, H. Frerichs and W. Tremel. In situ generation of H2O2 using CaO2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO2 nanozymes. Nanoscale. 2023;15(11):5209-5218. https://doi.org/10.1039/D2NR02575B.
- M. Romero-Saez, R. Suresh, N. Benito, S. Rajendran, F. Gracia, C. Navas-Cárdenas, A.K. Priya and M. Soto-Moscoso. Defective Ce3+ associated CeO2 nanoleaves for enhanced CO oxidation. Fuel. 2022;315:122822. https://doi.org/10.1016/j.fuel.2021.122822.
- G. Murugadoss, J. Ma, X. Ning and M.R. Kumar. Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorganic Chemistry Communications. 2019;109:107577. https://doi.org/10.1016/j.inoche.2019.107577.
- T. Umehara, M. Hagiwara and S. Fujihara. Synthesis of hollow and aggregated CeO2: Sm3+ microspheres and their redox-responsive luminescence. Journal of Alloys and Compounds. 2019;787:1074-1081. https://doi.org/10.1016/j.jallcom.2019.02.129.