Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 486 - 496
https://doi.org/10.12991/jrespharm.1647462

Abstract

References

  • [1] Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009; 20(7): 521-529. https://doi.org/10.1016/j.jnutbio.2008.05.011
  • [2] de Pascual-Teresa S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys. 2014; 559(1) :68-74. https://doi.org/10.1016/j.abb.2014.04.012
  • [3] Afkir S, Markaoui M, Aziz M, Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. Effect of flavonoïds from Arbutus unedo leaves on rat isolated thoracic aorta. Arab J Med Aromat Plants. 2015; 1(2): 75-93. https://doi.org/10.48347/IMIST.PRSM/ajmap-v1i2.4324
  • [4] Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, Ağçam E, Ayvaz Z, Durazzo A, Lucarini M, Direito R, Diaconeasa Z. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/ındustrial use, and ınnovation potential. Antioxidants. 2022; 12(1): 48. https://doi:10.3390/antiox12010048
  • [5] Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E. The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Front Pharmacol. 2020; 11(1): 1300. https://doi:10.3389/fphar.2020.01300
  • [6] Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, Ivancic A. Investigation of anthocyanin profile of four elderberry species and ınterspecific hybrids. J Agric Food Chem. 2014; 62(24): 5573-5580. https://doi:10.1021/jf501194
  • [7] Nohara C, Yokoyama D, Tanaka W, Sogon T, Sakono M, Sakakibara H. Daily consumption of bilberry (Vaccinium myrtillus L.) extracts increases the absorption rate of anthocyanins in rats. J Agric Food Chem. 2018; 66(30): 7958-7964. https://doi:10.1021/acs.jafc.8b02404
  • [8] Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res. 2016; 30(8): 1265-1286. https://doi:10.1002/ptr.5642
  • [9] Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014; 7(1): 54-66. https://doi.org/10.1016/j.jff.2013.05.010
  • [10] Diaconeasa Z, Leopold L, Rugină D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci. 2015; 16(2): 2352-2365. https://doi:10.3390/ijms16022352
  • [11] Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol. 2006; 157(9): 876-884. https://doi.org/10.1016/j.resmic.2006.07.004
  • [12] Aura AM, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 2005; 44(3) :133-142. https://doi:10.1007/s00394-004-0502-2
  • [13] Ahn HJ, You HJ, Park MS, Li Z, Choe D, Johnston TV, Ku S, Ji GE. Microbial biocatalysis of quercetin-3- glucoside and isorhamnetin-3-glucoside in Salicornia herbacea and their contribution to improved anti- inflammatory activity. RSC Adv. 2020;10(9):5339–5350. https://doi.org/10.1039/C9RA08059G
  • [14] Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X. 2024;101776. https://doi.org/10.1016/j.fochx.2024.101776.
  • [15] Otieno DO, Ashton JF, Shah NP. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res Int. 2006; 39(4): 394-407. https://doi.org/10.1016/j.foodres.2005.08.010
  • [16] Di Gioia D, Strahsburger E, de Lacey AM, Bregola V, Marotti I, Aloisio I, Biavati B, Dinelli G. Flavonoid bioconversion in Bifidobacterium pseudocatenulatum B7003: A potential probiotic strain for functional food development. J Funct Foods. 2014; 7(1): 671-679. https://doi.org/10.1016/j.jff.2013.12.018
  • [17] Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int. 2009; 42(10): 1453-1461. https://doi.org/10.1016/j.foodres.2009.07.026
  • [18] Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016; 7(1): 375-393. https://doi:10.1146/annurev-food-041715-033346
  • [19] González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory, immunomodulatory, and prebiotic properties of dietary flavonoids. In: Watson RR, Preedy VR and Zibadi S. (Eds). Polyphenols: Prevention and treatment of human disease. Academic Press, United Kingdom, 2018, pp. 327-345. https://doi.org/10.1016/B978-0-12-813008-7.00028-X
  • [20] Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes. 2024;16(1):2426614. https://doi: 10.1080/19490976.2024.2426614
  • [21] Shen T, Han XZ, Wang XN, Fan PH, Ren DM, Lou HX. Protective Effects of Dietary Polyphenols in Human Diseases and Mechanisms of Action. In: Al-Gubory KH, Laher I. (Eds). Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer International Publishing, Switzerland, 2017, pp. 307-345. https://doi:10.1007/978-3-319-67625-8_13
  • [22] Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog. 2009; 8(1): 5. https://doi.org/10.4103/1477-3163.49014
  • [23] Ma G, Chen Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J Funct Foods. 2020; 66(1): 103829. https://doi:10.1016/j.jff.2020.103829
  • [24] Kim KN, Yao Y, Ju SY. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients. 2019; 11(10): 2512. https://doi:10.3390/nu11102512
  • [25] Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res. 2021; 65(8): 2000745. https://doi:10.1002/mnfr.202000745
  • [26] Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med. 2019;136:96-108. https://doi.org/10.1016/j.freeradbiomed.2019.04.005.
  • [27] Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as promising molecules affecting energy homeostasis, inflammation, and gut microbiota in Type 2 Diabetes with special reference to impact of acylation. J Agric Food Chem. 2023; 71(2): 1002-1017. https://doi:10.1021/acs.jafc.2c05879
  • [28] Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic Lactobacilli and Bifidobacteria against entero-and uropathogens. J Appl Microbiol. 2006; 100(6): 1324-1332.
  • [29] de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics—compensation for lactase insufficiency. Am J Clin Nutr. 2001; 73(2): 421s-429s. https://doi.org/10.1093/ajcn/73.2.421s
  • [30] Basholli-Salihu M, Schuster R, Mulla D, Praznik W, Viernstein H, Mueller M. Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst Eng. 2016; 39(12): 1879-1885. https://doi:10.1007/s00449-016-1662-1
  • [31] Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr. 2006; 45(1): 7-18. https://doi:10.1007/s00394-005-0557-8
  • [32] Keppler K, Humpf HU. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem. 2005; 13(17): 5195-5205. https://doi.org/10.1016/j.bmc.2005.05.003
  • [33] Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016; 7(3): 216-234. https://doi:10.1080/19490976.2016.1158395
  • [34] Kapoor P, Tiwari A, Sharma S, Tiwari V, Sheoran B, Ali U, Garg M. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: A systematic review via meta-analysis. Sci Rep. 2023; 13(1): 1729. https://doi:10.1038/s41598-023-28764-0
  • [35] Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021; 14(7): 690. https://doi:10.3390/ph14070690
  • [36] Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors. 2017; 43(4): 507-516. https://doi:10.1002/biof.1365
  • [37] Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018; 9(4): 2112- 2120. https://doi:10.1039/C7FO02061A
  • [38] Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C. A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients. 2017; 9(12): 1341. https://doi:10.3390/nu9121341

Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications

Year 2025, Volume: 29 Issue: 2, 486 - 496
https://doi.org/10.12991/jrespharm.1647462

Abstract

The bioavailability of anthocyanins is crucial for conveying their health benefits, but they are poorly absorbed in the gastrointestinal tract (GIT). The deglycosylation of anthocyanins is the key step in improving their bioavailability and bioactivity. This study investigated the potential of β-glucosidase and β-galactosidase cell-free enzymes from Bifidobacterium infantis, on glycolytic hydrolysis of essential anthocyanins, including Cyanidin-3-O-β-D-glucoside (C3-Glu), Malvidin-3- O-β-D-glucoside (M3-Glu), Cyanidin-3-O-β-D-galactoside (C3-Gal) and Delphinidin-3-O-β-D-glucoside (D3-Glu). According to our previous work, Bifidobacterium infantis (B. infantis) was chosen for this study due to its high β- glucosidase and β-galactosidase activity. The anthocyanin glycosides' stability was also evaluated to distinguish chemical instability from enzymatic degradation. B. infantis β-glucosidase exerted the highest activity toward C3-Glu, forming high levels of protocatechuic acid as an active compound, with lower hydrolytic rates observed for M3-Glu. Additionally, B. infantis's β-galactosidase activity was efficient against C3-Gal. According to this study, B. infantis prefers cyanidin glucoside and cyanidin galactoside as substrates. Under experimental circumstances, delphinidin exhibited lower chemical stability, but malvidin and cyanidin glycosides exhibited similar stability. In conclusion, chemical instability is the cause of delphinidin's rate of degradation. According to these results, B. infantis may be utilized as a probiotic supplement to improve the health advantages and bioavailability of meals high in anthocyanins, supporting the development of functional foods and medicinal formulations.

References

  • [1] Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009; 20(7): 521-529. https://doi.org/10.1016/j.jnutbio.2008.05.011
  • [2] de Pascual-Teresa S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys. 2014; 559(1) :68-74. https://doi.org/10.1016/j.abb.2014.04.012
  • [3] Afkir S, Markaoui M, Aziz M, Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. Effect of flavonoïds from Arbutus unedo leaves on rat isolated thoracic aorta. Arab J Med Aromat Plants. 2015; 1(2): 75-93. https://doi.org/10.48347/IMIST.PRSM/ajmap-v1i2.4324
  • [4] Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, Ağçam E, Ayvaz Z, Durazzo A, Lucarini M, Direito R, Diaconeasa Z. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/ındustrial use, and ınnovation potential. Antioxidants. 2022; 12(1): 48. https://doi:10.3390/antiox12010048
  • [5] Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E. The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Front Pharmacol. 2020; 11(1): 1300. https://doi:10.3389/fphar.2020.01300
  • [6] Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, Ivancic A. Investigation of anthocyanin profile of four elderberry species and ınterspecific hybrids. J Agric Food Chem. 2014; 62(24): 5573-5580. https://doi:10.1021/jf501194
  • [7] Nohara C, Yokoyama D, Tanaka W, Sogon T, Sakono M, Sakakibara H. Daily consumption of bilberry (Vaccinium myrtillus L.) extracts increases the absorption rate of anthocyanins in rats. J Agric Food Chem. 2018; 66(30): 7958-7964. https://doi:10.1021/acs.jafc.8b02404
  • [8] Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res. 2016; 30(8): 1265-1286. https://doi:10.1002/ptr.5642
  • [9] Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014; 7(1): 54-66. https://doi.org/10.1016/j.jff.2013.05.010
  • [10] Diaconeasa Z, Leopold L, Rugină D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci. 2015; 16(2): 2352-2365. https://doi:10.3390/ijms16022352
  • [11] Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol. 2006; 157(9): 876-884. https://doi.org/10.1016/j.resmic.2006.07.004
  • [12] Aura AM, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 2005; 44(3) :133-142. https://doi:10.1007/s00394-004-0502-2
  • [13] Ahn HJ, You HJ, Park MS, Li Z, Choe D, Johnston TV, Ku S, Ji GE. Microbial biocatalysis of quercetin-3- glucoside and isorhamnetin-3-glucoside in Salicornia herbacea and their contribution to improved anti- inflammatory activity. RSC Adv. 2020;10(9):5339–5350. https://doi.org/10.1039/C9RA08059G
  • [14] Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X. 2024;101776. https://doi.org/10.1016/j.fochx.2024.101776.
  • [15] Otieno DO, Ashton JF, Shah NP. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res Int. 2006; 39(4): 394-407. https://doi.org/10.1016/j.foodres.2005.08.010
  • [16] Di Gioia D, Strahsburger E, de Lacey AM, Bregola V, Marotti I, Aloisio I, Biavati B, Dinelli G. Flavonoid bioconversion in Bifidobacterium pseudocatenulatum B7003: A potential probiotic strain for functional food development. J Funct Foods. 2014; 7(1): 671-679. https://doi.org/10.1016/j.jff.2013.12.018
  • [17] Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int. 2009; 42(10): 1453-1461. https://doi.org/10.1016/j.foodres.2009.07.026
  • [18] Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016; 7(1): 375-393. https://doi:10.1146/annurev-food-041715-033346
  • [19] González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory, immunomodulatory, and prebiotic properties of dietary flavonoids. In: Watson RR, Preedy VR and Zibadi S. (Eds). Polyphenols: Prevention and treatment of human disease. Academic Press, United Kingdom, 2018, pp. 327-345. https://doi.org/10.1016/B978-0-12-813008-7.00028-X
  • [20] Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes. 2024;16(1):2426614. https://doi: 10.1080/19490976.2024.2426614
  • [21] Shen T, Han XZ, Wang XN, Fan PH, Ren DM, Lou HX. Protective Effects of Dietary Polyphenols in Human Diseases and Mechanisms of Action. In: Al-Gubory KH, Laher I. (Eds). Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer International Publishing, Switzerland, 2017, pp. 307-345. https://doi:10.1007/978-3-319-67625-8_13
  • [22] Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog. 2009; 8(1): 5. https://doi.org/10.4103/1477-3163.49014
  • [23] Ma G, Chen Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J Funct Foods. 2020; 66(1): 103829. https://doi:10.1016/j.jff.2020.103829
  • [24] Kim KN, Yao Y, Ju SY. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients. 2019; 11(10): 2512. https://doi:10.3390/nu11102512
  • [25] Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res. 2021; 65(8): 2000745. https://doi:10.1002/mnfr.202000745
  • [26] Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med. 2019;136:96-108. https://doi.org/10.1016/j.freeradbiomed.2019.04.005.
  • [27] Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as promising molecules affecting energy homeostasis, inflammation, and gut microbiota in Type 2 Diabetes with special reference to impact of acylation. J Agric Food Chem. 2023; 71(2): 1002-1017. https://doi:10.1021/acs.jafc.2c05879
  • [28] Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic Lactobacilli and Bifidobacteria against entero-and uropathogens. J Appl Microbiol. 2006; 100(6): 1324-1332.
  • [29] de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics—compensation for lactase insufficiency. Am J Clin Nutr. 2001; 73(2): 421s-429s. https://doi.org/10.1093/ajcn/73.2.421s
  • [30] Basholli-Salihu M, Schuster R, Mulla D, Praznik W, Viernstein H, Mueller M. Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst Eng. 2016; 39(12): 1879-1885. https://doi:10.1007/s00449-016-1662-1
  • [31] Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr. 2006; 45(1): 7-18. https://doi:10.1007/s00394-005-0557-8
  • [32] Keppler K, Humpf HU. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem. 2005; 13(17): 5195-5205. https://doi.org/10.1016/j.bmc.2005.05.003
  • [33] Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016; 7(3): 216-234. https://doi:10.1080/19490976.2016.1158395
  • [34] Kapoor P, Tiwari A, Sharma S, Tiwari V, Sheoran B, Ali U, Garg M. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: A systematic review via meta-analysis. Sci Rep. 2023; 13(1): 1729. https://doi:10.1038/s41598-023-28764-0
  • [35] Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021; 14(7): 690. https://doi:10.3390/ph14070690
  • [36] Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors. 2017; 43(4): 507-516. https://doi:10.1002/biof.1365
  • [37] Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018; 9(4): 2112- 2120. https://doi:10.1039/C7FO02061A
  • [38] Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C. A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients. 2017; 9(12): 1341. https://doi:10.3390/nu9121341
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Articles
Authors

Aida Shala

Entela Haloci This is me

Toskë Kryeziu

Arsim Haliti This is me

Mimoza Basholli Salihu

Helmut Viernstein This is me

Monika Mueller This is me

Publication Date
Submission Date December 5, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Shala, A., Haloci, E., Kryeziu, T., Haliti, A., et al. (n.d.). Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications. Journal of Research in Pharmacy, 29(2), 486-496. https://doi.org/10.12991/jrespharm.1647462
AMA Shala A, Haloci E, Kryeziu T, Haliti A, Basholli Salihu M, Viernstein H, Mueller M. Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications. J. Res. Pharm. 29(2):486-496. doi:10.12991/jrespharm.1647462
Chicago Shala, Aida, Entela Haloci, Toskë Kryeziu, Arsim Haliti, Mimoza Basholli Salihu, Helmut Viernstein, and Monika Mueller. “Enzymatic Hydrolysis of Anthocyanin Glycosides by Bifidobacterium Infantis Cell-Free Enzymes: Stability Assessment and Bioavailability Implications”. Journal of Research in Pharmacy 29, no. 2 n.d.: 486-96. https://doi.org/10.12991/jrespharm.1647462.
EndNote Shala A, Haloci E, Kryeziu T, Haliti A, Basholli Salihu M, Viernstein H, Mueller M Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications. Journal of Research in Pharmacy 29 2 486–496.
IEEE A. Shala, E. Haloci, T. Kryeziu, A. Haliti, M. Basholli Salihu, H. Viernstein, and M. Mueller, “Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications”, J. Res. Pharm., vol. 29, no. 2, pp. 486–496, doi: 10.12991/jrespharm.1647462.
ISNAD Shala, Aida et al. “Enzymatic Hydrolysis of Anthocyanin Glycosides by Bifidobacterium Infantis Cell-Free Enzymes: Stability Assessment and Bioavailability Implications”. Journal of Research in Pharmacy 29/2 (n.d.), 486-496. https://doi.org/10.12991/jrespharm.1647462.
JAMA Shala A, Haloci E, Kryeziu T, Haliti A, Basholli Salihu M, Viernstein H, Mueller M. Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications. J. Res. Pharm.;29:486–496.
MLA Shala, Aida et al. “Enzymatic Hydrolysis of Anthocyanin Glycosides by Bifidobacterium Infantis Cell-Free Enzymes: Stability Assessment and Bioavailability Implications”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 486-9, doi:10.12991/jrespharm.1647462.
Vancouver Shala A, Haloci E, Kryeziu T, Haliti A, Basholli Salihu M, Viernstein H, Mueller M. Enzymatic hydrolysis of anthocyanin glycosides by Bifidobacterium infantis cell-free enzymes: Stability assessment and bioavailability implications. J. Res. Pharm. 29(2):486-9.