Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 833 - 840
https://doi.org/10.12991/jrespharm.1666368

Abstract

References

  • [1] Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673. https://doi.org/10.1016%2Fj.ijpharm.2020.119673
  • [2] Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361–380. https://doi.org/10.1016/j.jconrel.2022.09.025
  • [3] Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci.2019;14:117–129. https://doi.org/10.1016/j.ajps.2018.05.007
  • [4] Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;16:6249–6261. https://doi.org/10.2147/ijn.s319348
  • [5] Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;568:118556. https://doi.org/10.1016/j.ijpharm.2019.118556
  • [6] Liu Y, Wang Y, Yang J, Zhang H, Gan L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm. 2019;565:133–142. https://doi.org/10.1016/j.ijpharm.2019.05.018
  • [7] Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release. 2017;268:19-39. https://doi.org/10.1016/j.jconrel.2017.07.035
  • [8] Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv. 2023;30:2163321. https://doi.org/10.1080%2F10717544.2022.2163321
  • [9] El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. 2019;26:1140–1154. https://doi.org/10.1080%2F10717544.2019.1686087
  • [10] Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for ıncreased bioavailability and therapeutic efficacy. Pharmaceutics. 2023;15(2):678. https://doi.org/10.3390%2Fpharmaceutics15020678
  • [11] Ibrahim SS, Abd-Allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm. 2022;625:122068. https://doi.org/10.1016/j.ijpharm.2022.122068
  • [12] Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAE-A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm. 2023;6:100201. https://doi.org/10.1016/j.ijpx.2023.100201
  • [13] Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech. 2022;23(4):112.https://doi.org/10.1208/s12249-022-02217-9
  • [14] Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24:204–215. https://doi.org/10.3109/08982104.2014.881850
  • [15] Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res. 2023;13:1153–1168. https://doi.org/10.1007/s13346-022-01285-5
  • [16] Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Effect of Pegylated Edge activator on Span 60 based-nanovesicles: Comparision between MYRJ 52 and MYRJ 59. Univers J Pharm Res. 2019; 4(4):1-8 https://doi.org/10.22270/ujpr.v4i4.290
  • [17] Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release. 2017;254:10-22. https://doi.org/10.1016/j.jconrel.2017.03.039
  • [18] Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25:12–22. https://doi.org/10.1080/10717544.2017.1410262
  • [19] Esquerdo VM, Dotto GL, Pinto LAA. Preparation of nanoemulsions containing unsaturated fatty acid concentrate-chitosan capsules. J Colloid Interface Sci. 2015;445:137–142. https://doi.org/10.1016/j.jcis.2014.12.094
  • [20] ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23:2115–2123. https://doi.org/10.3109/10717544.2014.942811
  • [21] Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19. https://doi.org/10.1016/s0169-409x(00)00118-6
  • [22] Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020;30:163–173. https://doi.org/10.1080/08982104.2019.1610435
  • [23] Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res. 2019;29:283–290. https://doi.org/10.1080/08982104.2018.1552706
  • [24] Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67:283–290.
  • [25] Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18:551–562. https://doi.org/10.1208/s12249-016-0528-9
  • [26] Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial therapy of letrozole- and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells. Pharmaceutics. 2022;14(8):1727. https://doi.org/10.3390/pharmaceutics14081727.
  • [27] Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size. AAPS PharmSciTech. 2019;20(3):95. https://doi.org/10.1208/s12249-019-1306-2
  • [28] Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of TNF-α, NF-кB and COX-2 in complete Freund’s Adjuvant-Induced Arthritis model in rats. Int J Nanomedicine. 2021;16:133–145. https://doi.org/10.2147/ijn.s289828
  • [29] Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm. 2015;483:77–88. https://doi.org/10.1016/j.ijpharm.2015.02.012
  • [30] Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and ın vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics. 2023;15(2):641. https://doi.org/10.3390/pharmaceutics15020641
  • [31] Kalua CM, Allen MS, Bedgood DR, Bishop AG, Prenzler PD, Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007;100:273–286. https://doi.org/10.1016/j.foodchem.2005.09.059
  • [32] El SN, Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev. 2009;67:632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x
  • [33] Kanakis P, Termentzi A, Michel T, Gikas E, Halabalaki M, Skaltsounis A-L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013;79:1576–1587. https://doi.org/10.1055/s-0033-1350823
  • [34] Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid Based Complement Alternat Med. 2015;2015:541591. https://doi.org/10.1155%2F2015%2F541591
  • [35] Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An ın vitro and ın silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (Spanlastics). Antioxidants (Basel). 2021;10(12):1860. http://dx.doi.org/10.3390/antiox10121860
  • [36] Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2016;7(2):205-233. https://doi.org/10.1016/j.jtcme.2016.05.005.
  • [37] Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem. 2019;49:138–149. https://doi.org/10.1080/10408347.2018.1489216
  • [38] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–818. https://doi.org/10.1021/mp700113r
  • [39] Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. https://doi.org/10.1208%2Fs12248-012-9432-8
  • [40] Ismail S, Garhy D, Ibrahim HK. Optimization of topical curcumin spanlastics for melanoma treatment. Pharm Dev Technol. 2023;28(5):425-439. https://doi.org/10.1080/10837450.2023.2204926
  • [41] Ramadan G, El-Beih NM, Abd El-Ghffar EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr. 2009;102(11):1611-1619. https://doi.org/10.1017/s000711450999208x
  • [42] Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014;156:176–183. 10.1016/j.foodchem.2014.01.115
  • [43] Dai W, Ruan C, Zhang Y, Wang J, Han J, Shao Z, Sun Y, Liang J. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. J Funct Foods. 2020;65:103732. https://doi.org/10.1016/j.jff.2019.103732
  • [44] Fujiki H, Suganuma M. Green tea: An effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012;324:119–125. https://doi.org/10.1016/j.canlet.2012.05.012
  • [45] Al-Sayed E, Abdel-Daim MM. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev Res. 2018;79:157–164. https://doi.org/10.1002/ddr.21430
  • [46] Yu Y, Deng Y, Lu BM, Liu YX, Li J, Bao JK. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis. 2014;19(1):1-18. https://doi.org/10.1007/s10495-013-0908-5
  • [47] Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats. J Nutr. 2001;131(11):2885-2891. https://doi.org/10.1093/jn/131.11.2885
  • [48] Song Q, Li D, Zhou Y, Yang J, Yang W, Zhou G, Wen J. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomedicine. 2014;9:2157-2165. https://doi.org/10.2147%2FIJN.S59331
  • [49] Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of tea catechins and ıts ımprovement. Molecules. 2018;23(9):2346. https://doi.org/10.3390%2Fmolecules23092346
  • [50] Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for ımproving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals (Basel). 2021;14(1):68. https://doi.org/10.3390/ph14010068
  • [51] Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The ımportance of nano-liposomes. Pharmaceutics. 2022;14(12):2808. https://doi.org/10.3390/pharmaceutics14122808
  • [52] Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ıngredients: Formulation approaches and applications. Plants (Basel). 2021;10(6):1238. https://doi.org/10.3390/plants10061238.

Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading

Year 2025, Volume: 29 Issue: 2, 833 - 840
https://doi.org/10.12991/jrespharm.1666368

Abstract

Spanlastic is a novel surfactant-based elastic nanovesicle delivery system that has been shown to deliver many different types of drugs. The present review aimed to illustrate the structure, composition, evaluation and discuss some bioactive compounds that can be delivered by spanlastics. Spanlastics are composed of a non-ionic surfactant and an edge activator, which gives them their elasticity. This elasticity allows spanlastics to deform and squeeze through the skin pores, making them ideal for transdermal delivery. Spanlastics have also been shown to be effective in delivering drugs to the eye, buccal mucosa, and other tissues. Spanlastics have several advantages over other drug delivery systems. They are non-immunogenic, biodegradable, and chemically stable. They are also more elastic than liposomes, which makes them more effective at penetrating biological membranes. In addition, spanlastics can be formulated to target specific tissues, which can improve the therapeutic efficacy of the drug. Spanlastics are a promising new drug delivery system with a wide range of potential applications. They are currently being investigated for the treatment of a wide range of diseases, including cancer, inflammation, and infectious diseases. Finally, this review leads to a conclude that Spanelastic can be used as a good Vesicular Nanocarrier for transdermal drug delivery system.

References

  • [1] Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673. https://doi.org/10.1016%2Fj.ijpharm.2020.119673
  • [2] Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361–380. https://doi.org/10.1016/j.jconrel.2022.09.025
  • [3] Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci.2019;14:117–129. https://doi.org/10.1016/j.ajps.2018.05.007
  • [4] Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;16:6249–6261. https://doi.org/10.2147/ijn.s319348
  • [5] Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;568:118556. https://doi.org/10.1016/j.ijpharm.2019.118556
  • [6] Liu Y, Wang Y, Yang J, Zhang H, Gan L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm. 2019;565:133–142. https://doi.org/10.1016/j.ijpharm.2019.05.018
  • [7] Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release. 2017;268:19-39. https://doi.org/10.1016/j.jconrel.2017.07.035
  • [8] Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv. 2023;30:2163321. https://doi.org/10.1080%2F10717544.2022.2163321
  • [9] El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. 2019;26:1140–1154. https://doi.org/10.1080%2F10717544.2019.1686087
  • [10] Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for ıncreased bioavailability and therapeutic efficacy. Pharmaceutics. 2023;15(2):678. https://doi.org/10.3390%2Fpharmaceutics15020678
  • [11] Ibrahim SS, Abd-Allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm. 2022;625:122068. https://doi.org/10.1016/j.ijpharm.2022.122068
  • [12] Agha OA, Girgis GNS, El-Sokkary MMA, Soliman OAE-A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm. 2023;6:100201. https://doi.org/10.1016/j.ijpx.2023.100201
  • [13] Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech. 2022;23(4):112.https://doi.org/10.1208/s12249-022-02217-9
  • [14] Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24:204–215. https://doi.org/10.3109/08982104.2014.881850
  • [15] Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res. 2023;13:1153–1168. https://doi.org/10.1007/s13346-022-01285-5
  • [16] Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Effect of Pegylated Edge activator on Span 60 based-nanovesicles: Comparision between MYRJ 52 and MYRJ 59. Univers J Pharm Res. 2019; 4(4):1-8 https://doi.org/10.22270/ujpr.v4i4.290
  • [17] Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: Ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release. 2017;254:10-22. https://doi.org/10.1016/j.jconrel.2017.03.039
  • [18] Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25:12–22. https://doi.org/10.1080/10717544.2017.1410262
  • [19] Esquerdo VM, Dotto GL, Pinto LAA. Preparation of nanoemulsions containing unsaturated fatty acid concentrate-chitosan capsules. J Colloid Interface Sci. 2015;445:137–142. https://doi.org/10.1016/j.jcis.2014.12.094
  • [20] ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23:2115–2123. https://doi.org/10.3109/10717544.2014.942811
  • [21] Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19. https://doi.org/10.1016/s0169-409x(00)00118-6
  • [22] Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020;30:163–173. https://doi.org/10.1080/08982104.2019.1610435
  • [23] Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res. 2019;29:283–290. https://doi.org/10.1080/08982104.2018.1552706
  • [24] Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67:283–290.
  • [25] Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18:551–562. https://doi.org/10.1208/s12249-016-0528-9
  • [26] Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial therapy of letrozole- and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells. Pharmaceutics. 2022;14(8):1727. https://doi.org/10.3390/pharmaceutics14081727.
  • [27] Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size. AAPS PharmSciTech. 2019;20(3):95. https://doi.org/10.1208/s12249-019-1306-2
  • [28] Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of TNF-α, NF-кB and COX-2 in complete Freund’s Adjuvant-Induced Arthritis model in rats. Int J Nanomedicine. 2021;16:133–145. https://doi.org/10.2147/ijn.s289828
  • [29] Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm. 2015;483:77–88. https://doi.org/10.1016/j.ijpharm.2015.02.012
  • [30] Gupta I, Adin SN, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and ın vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics. 2023;15(2):641. https://doi.org/10.3390/pharmaceutics15020641
  • [31] Kalua CM, Allen MS, Bedgood DR, Bishop AG, Prenzler PD, Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007;100:273–286. https://doi.org/10.1016/j.foodchem.2005.09.059
  • [32] El SN, Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev. 2009;67:632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x
  • [33] Kanakis P, Termentzi A, Michel T, Gikas E, Halabalaki M, Skaltsounis A-L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013;79:1576–1587. https://doi.org/10.1055/s-0033-1350823
  • [34] Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid Based Complement Alternat Med. 2015;2015:541591. https://doi.org/10.1155%2F2015%2F541591
  • [35] Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An ın vitro and ın silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (Spanlastics). Antioxidants (Basel). 2021;10(12):1860. http://dx.doi.org/10.3390/antiox10121860
  • [36] Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2016;7(2):205-233. https://doi.org/10.1016/j.jtcme.2016.05.005.
  • [37] Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem. 2019;49:138–149. https://doi.org/10.1080/10408347.2018.1489216
  • [38] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–818. https://doi.org/10.1021/mp700113r
  • [39] Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. https://doi.org/10.1208%2Fs12248-012-9432-8
  • [40] Ismail S, Garhy D, Ibrahim HK. Optimization of topical curcumin spanlastics for melanoma treatment. Pharm Dev Technol. 2023;28(5):425-439. https://doi.org/10.1080/10837450.2023.2204926
  • [41] Ramadan G, El-Beih NM, Abd El-Ghffar EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr. 2009;102(11):1611-1619. https://doi.org/10.1017/s000711450999208x
  • [42] Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014;156:176–183. 10.1016/j.foodchem.2014.01.115
  • [43] Dai W, Ruan C, Zhang Y, Wang J, Han J, Shao Z, Sun Y, Liang J. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. J Funct Foods. 2020;65:103732. https://doi.org/10.1016/j.jff.2019.103732
  • [44] Fujiki H, Suganuma M. Green tea: An effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012;324:119–125. https://doi.org/10.1016/j.canlet.2012.05.012
  • [45] Al-Sayed E, Abdel-Daim MM. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev Res. 2018;79:157–164. https://doi.org/10.1002/ddr.21430
  • [46] Yu Y, Deng Y, Lu BM, Liu YX, Li J, Bao JK. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis. 2014;19(1):1-18. https://doi.org/10.1007/s10495-013-0908-5
  • [47] Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats. J Nutr. 2001;131(11):2885-2891. https://doi.org/10.1093/jn/131.11.2885
  • [48] Song Q, Li D, Zhou Y, Yang J, Yang W, Zhou G, Wen J. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomedicine. 2014;9:2157-2165. https://doi.org/10.2147%2FIJN.S59331
  • [49] Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of tea catechins and ıts ımprovement. Molecules. 2018;23(9):2346. https://doi.org/10.3390%2Fmolecules23092346
  • [50] Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for ımproving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals (Basel). 2021;14(1):68. https://doi.org/10.3390/ph14010068
  • [51] Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The ımportance of nano-liposomes. Pharmaceutics. 2022;14(12):2808. https://doi.org/10.3390/pharmaceutics14122808
  • [52] Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ıngredients: Formulation approaches and applications. Plants (Basel). 2021;10(6):1238. https://doi.org/10.3390/plants10061238.
There are 52 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Nawal Ayash Rajab This is me

Yassir Mohamed Adulhussein This is me

Enas Jawad Kadhim This is me

Shaimaa Nazar Abdulhamid This is me

Enas Al-ani This is me

Publication Date
Submission Date March 26, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Rajab, N. A., Adulhussein, Y. M., Kadhim, E. J., Abdulhamid, S. N., et al. (n.d.). Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading. Journal of Research in Pharmacy, 29(2), 833-840. https://doi.org/10.12991/jrespharm.1666368
AMA Rajab NA, Adulhussein YM, Kadhim EJ, Abdulhamid SN, Al-ani E. Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading. J. Res. Pharm. 29(2):833-840. doi:10.12991/jrespharm.1666368
Chicago Rajab, Nawal Ayash, Yassir Mohamed Adulhussein, Enas Jawad Kadhim, Shaimaa Nazar Abdulhamid, and Enas Al-ani. “Spanelastic As a Vesicular Nanocarrier for Transdermal Drug Delivery System: Preparation, Characterization and Bioactive Loading”. Journal of Research in Pharmacy 29, no. 2 n.d.: 833-40. https://doi.org/10.12991/jrespharm.1666368.
EndNote Rajab NA, Adulhussein YM, Kadhim EJ, Abdulhamid SN, Al-ani E Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading. Journal of Research in Pharmacy 29 2 833–840.
IEEE N. A. Rajab, Y. M. Adulhussein, E. J. Kadhim, S. N. Abdulhamid, and E. Al-ani, “Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading”, J. Res. Pharm., vol. 29, no. 2, pp. 833–840, doi: 10.12991/jrespharm.1666368.
ISNAD Rajab, Nawal Ayash et al. “Spanelastic As a Vesicular Nanocarrier for Transdermal Drug Delivery System: Preparation, Characterization and Bioactive Loading”. Journal of Research in Pharmacy 29/2 (n.d.), 833-840. https://doi.org/10.12991/jrespharm.1666368.
JAMA Rajab NA, Adulhussein YM, Kadhim EJ, Abdulhamid SN, Al-ani E. Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading. J. Res. Pharm.;29:833–840.
MLA Rajab, Nawal Ayash et al. “Spanelastic As a Vesicular Nanocarrier for Transdermal Drug Delivery System: Preparation, Characterization and Bioactive Loading”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 833-40, doi:10.12991/jrespharm.1666368.
Vancouver Rajab NA, Adulhussein YM, Kadhim EJ, Abdulhamid SN, Al-ani E. Spanelastic as a vesicular nanocarrier for transdermal drug delivery system: Preparation, characterization and bioactive loading. J. Res. Pharm. 29(2):833-40.