Research Article
BibTex RIS Cite

Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum

Year 2025, Volume: 29 Issue: 5, 2055 - 2063, 01.09.2025
https://doi.org/10.12991/jrespharm.1766279

Abstract

The discovery and development of new antituberculosis medications effective against multidrug-resistant Mycobacterium strains are necessary to reduce the mortality in tuberculosis (TB) cases. To accelerate the discovery of anti- TB drugs, Mycobacterium smegmatis was commonly used as a surrogate bacterium in the preliminary screening of antituberculosis compounds. This study aimed to fractionate the secondary metabolites of the endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum, to evaluate its antimycobacterial activity against M. smegmatis, and to identify the secondary metabolite profile of its active fraction. Fifty-six fractions were successfully obtained through thin-layer chromatography (TLC) and column chromatography techniques. Among all fractions, ten fractions showed remarkable antimycobacterial activity against M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 85–1,325 μg/ml. Fraction F53 exhibited the strongest antimycobacterial activity with the lowest MIC of 85 μg/ml. This fraction also inhibited the biofilm formation of M. smegmatis at 1× MIC and ½× MIC by 62,3%, and 52,1%, respectively. Observation using a scanning electron microscope (SEM) showed that the biofilm matrix of M. smegmatis treated with fraction F53 was thinner, less compact, and separated into small pieces compared to the negative control. Furthermore, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that this corresponding fraction contained five proposed compounds, including 2-(p-anisyl)-5-methyl-1-hexene, nigakilactone H, tetratriacontanamine, and two other unidentified compounds.

References

  • [1] WHO Global tuberculosis report 2023. https://iris.who.int/bitstream/handle/10665/373828/9789240083851- eng.pdf?sequence=1 (accessed on 7 March 2024).
  • [2] Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;. 70(1): 685-690. https://doi.org/10.1038/ja.2017.23
  • [3] Mpeirwe M, Taremwa IM, Orikriza P, Ogwang PE, Ssesazi D, Bazira J. Anti-mycobacterial activity of medicinal plant extracts used in the treatment of tuberculosis by traditional medicine practitioners in Uganda. Pharmacol Pharm. 2023; 14(2): 33-42. https://doi.org/10.4236/pp.2023.142003
  • [4] Kumar A, Chettiar S, Parish T. Current challenges in drug discovery for tuberculosis. Expert Opin Drug Discov. 2017; 12(1):1-4. https://doi.org/10.1080/17460441.2017.1255604
  • [5] Tuyiringire N, Mugisha IT, Tusubira D, Munyampundu J, Muvunyi CM, Heyden YV. In vitro antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J Clin Tuberc Other Mycobact Dis. 2022; 27(1): 100307. https://doi.org/10.1016/j.jctube.2022.100307
  • [6] Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016; 61: 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
  • [7] Bhunu B, Mautsa R, Mukanganyama S. 2017. Inhibition of biofilm formation in Mycobacterium smegmatis by Parinari curatellifolia leaf extracts. BMC Complement Altern Med. 2017; 17(1): 285. https://doi.org/10.1186/s12906- 017- 1801-5
  • [8] Mombeshora M, Chi GF, Mukanganyama S. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem Res Int. 2021; 2021:9946183. https://doi.org/10.1155/2021/9946183
  • [9] Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017; 11(1): 53-62. https://doi.org/10.2174/1874285801711010053
  • [10] Saini P, Gangwar M, Kalia A, Singh N, Narang D. Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. J Appl Nat Sci. 2016; 8(1): 416 422. https://doi.org/10.31018/jans.v8i1.809.
  • [11] Sharma A, Malhotra B, Kharkwal H, Kulkarni GT, Kaushik N. Therapeutic agents from endophytes harbored in Asian medicinal plants. Phytochem Rev. 2020; 19: 691-720. https://doi.org/10.1007/s11101-020-09683-8
  • [12] Priyanto JA, Prastya ME, Astuti RI, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotechnol. 2023; 195: 6653-6674. https://doi.org/10.1007/s12010-023-04382-4
  • [13] Priyanto JA, Astuti RI, Prastya ME. Bioprospeksi Bacillus spp. endofit asal tanaman jengkol: potensi anti- Mycobacterium dan karakterisasi genom lengkapnya. Laporan Akhir Penelitian Dosen Muda 2023, IPB University, 2023.
  • [14] Yuliastri WO, Diantini A, Ghozali M, Sahidin I, Isrul M. Phytochemical constituent and in-vitro cytotoxic activity of Hibiscus sabdariffa L. calyx fraction on human breast cancer cell line MDA-MB-231. Rasayan J Chem. 2022; 15(3): 1619-1625. https://doi.org/10.31788/RJC.2022.1536694
  • [15] Jiménez MAA, Cruz AZ, Belmares SYS, Valdés JAA, Rivera CAS. Phytochemical and biological characterization of the fractions of the aqueous and ethanolic extracts of Parthenium hysterophorus. Separations. 2022; 9(11): 359. https://doi.org/10.3390/separations9110359
  • [16] Solis-Salas LM, Sierra-Rivera CA, Cobos-Puc LE, Ascacio-Valdés JA, Silva- Belmares SY. Antibacterial potential by rupture membrane and antioxidant capacity of purified phenolic fractions of Persea americana leaf extract. Antibiotics (Basel). 2021;10(5):508. https://doi.org/10.3390/antibiotics10050508
  • [17] Silva AC, Santana EF, Saraiva AM, Coutinho FN, Castro RH, Pisciottano MN, Amorim EL, Albuquerque UP. Which approach is more effective in the selection of plants with antimicrobial activity? Evid Based Complement Alternat Med. 2013;2013:308980. https://doi.org/10.1155/2013/308980
  • [18] Hardie KR, Fenn SJ. JMM profile: rifampicin: A broad-spectrum antibiotic. J Med Microbiol. 2022; 71(8): 1-5. https://doi.org/10.1099/jmm.0.001566
  • [19] Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: an in vitro and in silico approach. PLoS One. 2023;18(8):e0289723. https://doi.org/10.1371/journal.pone.0289723
  • [20] Forestryana D, Arnida A. Phytochemical screenings and thin layer chromatography analysis of ethanol extract jeruju leaf (Hydrolea spinosa L.). Jurnal Ilmiah Farmako Bahari. 2020; 11(2): 113-124. https://doi.org/10.52434/jfb.v11i2.859
  • [21] Nadar S, Khan T, Patching SG, Omri A. Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms. 2022; 10(2): 303. https://doi.org/10.3390/microorganisms10020303
  • [22] Samarakoon SR, Ediriweera MK, Nwokwu CDU, Bandara CJ, Tennekoon KH, Piyathilaka P, Karunaratne DN, Karunaratne V. A study on cytotoxic and apoptotic potential of a triterpenoid saponin (3-O-α-L-arabinosyl oleanolic acid) isolated from Schumacheria castaneifolia Vahl in human non-small-cell lung cancer (NCI-H292) cells. Biomed Res Int. 2017;2017:9854083. https://doi.org/10.1155/2017/9854083
  • [23] Omara T, Kiprop AK, Kosgei VJ. Isolation and characterization of compounds in ethanolic extract of Albizia coriaria (Welw ex. Oliver) leaves: a further evidence of its ethnomedicinal diversity. Bull Natl Res Cent. 2022; 46:30. https://doi.org/10.1186/s42269-022-00716-0
  • [24] Chepkorir R, Matasyoh JC, Wagara IN. Two withanolides from Withania somnifera (Solanaceae) and activity of methanolic extracts against fungal and bacterial pathogens that affects food crops. Afr J Food Sci. 2018; 12(5): 115- 125. https://doi.org/10.5897/AJFS2016.1503
  • [25] [CLSI] Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute
  • [26] Asahi Y, Miura J, Tsuda T, Kuwabata S, Tsunashima K, Noiri Y, Sakata T, Ebisu S, Hayashi M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express. 2015; 5(1):6. https://doi.org/10.1186/s13568-015-0097-4
  • [27] Sadiq MB, Tarning J, Cho TZA, Anal AK. Antibacterial activities and possible modes of action of Acacia nilotica (L.) Del. against multidrug-resistant Escherichia coli and Salmonella. Molecules. 2017; 22(1): 47. https://doi.org/10.3390/molecules22010047

Year 2025, Volume: 29 Issue: 5, 2055 - 2063, 01.09.2025
https://doi.org/10.12991/jrespharm.1766279

Abstract

References

  • [1] WHO Global tuberculosis report 2023. https://iris.who.int/bitstream/handle/10665/373828/9789240083851- eng.pdf?sequence=1 (accessed on 7 March 2024).
  • [2] Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;. 70(1): 685-690. https://doi.org/10.1038/ja.2017.23
  • [3] Mpeirwe M, Taremwa IM, Orikriza P, Ogwang PE, Ssesazi D, Bazira J. Anti-mycobacterial activity of medicinal plant extracts used in the treatment of tuberculosis by traditional medicine practitioners in Uganda. Pharmacol Pharm. 2023; 14(2): 33-42. https://doi.org/10.4236/pp.2023.142003
  • [4] Kumar A, Chettiar S, Parish T. Current challenges in drug discovery for tuberculosis. Expert Opin Drug Discov. 2017; 12(1):1-4. https://doi.org/10.1080/17460441.2017.1255604
  • [5] Tuyiringire N, Mugisha IT, Tusubira D, Munyampundu J, Muvunyi CM, Heyden YV. In vitro antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J Clin Tuberc Other Mycobact Dis. 2022; 27(1): 100307. https://doi.org/10.1016/j.jctube.2022.100307
  • [6] Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016; 61: 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
  • [7] Bhunu B, Mautsa R, Mukanganyama S. 2017. Inhibition of biofilm formation in Mycobacterium smegmatis by Parinari curatellifolia leaf extracts. BMC Complement Altern Med. 2017; 17(1): 285. https://doi.org/10.1186/s12906- 017- 1801-5
  • [8] Mombeshora M, Chi GF, Mukanganyama S. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem Res Int. 2021; 2021:9946183. https://doi.org/10.1155/2021/9946183
  • [9] Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017; 11(1): 53-62. https://doi.org/10.2174/1874285801711010053
  • [10] Saini P, Gangwar M, Kalia A, Singh N, Narang D. Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. J Appl Nat Sci. 2016; 8(1): 416 422. https://doi.org/10.31018/jans.v8i1.809.
  • [11] Sharma A, Malhotra B, Kharkwal H, Kulkarni GT, Kaushik N. Therapeutic agents from endophytes harbored in Asian medicinal plants. Phytochem Rev. 2020; 19: 691-720. https://doi.org/10.1007/s11101-020-09683-8
  • [12] Priyanto JA, Prastya ME, Astuti RI, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotechnol. 2023; 195: 6653-6674. https://doi.org/10.1007/s12010-023-04382-4
  • [13] Priyanto JA, Astuti RI, Prastya ME. Bioprospeksi Bacillus spp. endofit asal tanaman jengkol: potensi anti- Mycobacterium dan karakterisasi genom lengkapnya. Laporan Akhir Penelitian Dosen Muda 2023, IPB University, 2023.
  • [14] Yuliastri WO, Diantini A, Ghozali M, Sahidin I, Isrul M. Phytochemical constituent and in-vitro cytotoxic activity of Hibiscus sabdariffa L. calyx fraction on human breast cancer cell line MDA-MB-231. Rasayan J Chem. 2022; 15(3): 1619-1625. https://doi.org/10.31788/RJC.2022.1536694
  • [15] Jiménez MAA, Cruz AZ, Belmares SYS, Valdés JAA, Rivera CAS. Phytochemical and biological characterization of the fractions of the aqueous and ethanolic extracts of Parthenium hysterophorus. Separations. 2022; 9(11): 359. https://doi.org/10.3390/separations9110359
  • [16] Solis-Salas LM, Sierra-Rivera CA, Cobos-Puc LE, Ascacio-Valdés JA, Silva- Belmares SY. Antibacterial potential by rupture membrane and antioxidant capacity of purified phenolic fractions of Persea americana leaf extract. Antibiotics (Basel). 2021;10(5):508. https://doi.org/10.3390/antibiotics10050508
  • [17] Silva AC, Santana EF, Saraiva AM, Coutinho FN, Castro RH, Pisciottano MN, Amorim EL, Albuquerque UP. Which approach is more effective in the selection of plants with antimicrobial activity? Evid Based Complement Alternat Med. 2013;2013:308980. https://doi.org/10.1155/2013/308980
  • [18] Hardie KR, Fenn SJ. JMM profile: rifampicin: A broad-spectrum antibiotic. J Med Microbiol. 2022; 71(8): 1-5. https://doi.org/10.1099/jmm.0.001566
  • [19] Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: an in vitro and in silico approach. PLoS One. 2023;18(8):e0289723. https://doi.org/10.1371/journal.pone.0289723
  • [20] Forestryana D, Arnida A. Phytochemical screenings and thin layer chromatography analysis of ethanol extract jeruju leaf (Hydrolea spinosa L.). Jurnal Ilmiah Farmako Bahari. 2020; 11(2): 113-124. https://doi.org/10.52434/jfb.v11i2.859
  • [21] Nadar S, Khan T, Patching SG, Omri A. Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms. 2022; 10(2): 303. https://doi.org/10.3390/microorganisms10020303
  • [22] Samarakoon SR, Ediriweera MK, Nwokwu CDU, Bandara CJ, Tennekoon KH, Piyathilaka P, Karunaratne DN, Karunaratne V. A study on cytotoxic and apoptotic potential of a triterpenoid saponin (3-O-α-L-arabinosyl oleanolic acid) isolated from Schumacheria castaneifolia Vahl in human non-small-cell lung cancer (NCI-H292) cells. Biomed Res Int. 2017;2017:9854083. https://doi.org/10.1155/2017/9854083
  • [23] Omara T, Kiprop AK, Kosgei VJ. Isolation and characterization of compounds in ethanolic extract of Albizia coriaria (Welw ex. Oliver) leaves: a further evidence of its ethnomedicinal diversity. Bull Natl Res Cent. 2022; 46:30. https://doi.org/10.1186/s42269-022-00716-0
  • [24] Chepkorir R, Matasyoh JC, Wagara IN. Two withanolides from Withania somnifera (Solanaceae) and activity of methanolic extracts against fungal and bacterial pathogens that affects food crops. Afr J Food Sci. 2018; 12(5): 115- 125. https://doi.org/10.5897/AJFS2016.1503
  • [25] [CLSI] Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute
  • [26] Asahi Y, Miura J, Tsuda T, Kuwabata S, Tsunashima K, Noiri Y, Sakata T, Ebisu S, Hayashi M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express. 2015; 5(1):6. https://doi.org/10.1186/s13568-015-0097-4
  • [27] Sadiq MB, Tarning J, Cho TZA, Anal AK. Antibacterial activities and possible modes of action of Acacia nilotica (L.) Del. against multidrug-resistant Escherichia coli and Salmonella. Molecules. 2017; 22(1): 47. https://doi.org/10.3390/molecules22010047
There are 27 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Genia Sotya Sinarawadi This is me 0009-0003-4160-8282

Jepri Agung Priyanto 0000-0003-2227-5040

Muhammad Eka Prastya This is me 0000-0003-2500-1264

Zetryana Puteri Tachrim This is me 0000-0001-6637-541X

Publication Date September 1, 2025
Submission Date July 23, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Sinarawadi, G. S., Priyanto, J. A., Prastya, M. E., Tachrim, Z. P. (2025). Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum. Journal of Research in Pharmacy, 29(5), 2055-2063. https://doi.org/10.12991/jrespharm.1766279
AMA Sinarawadi GS, Priyanto JA, Prastya ME, Tachrim ZP. Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum. J. Res. Pharm. September 2025;29(5):2055-2063. doi:10.12991/jrespharm.1766279
Chicago Sinarawadi, Genia Sotya, Jepri Agung Priyanto, Muhammad Eka Prastya, and Zetryana Puteri Tachrim. “Antimycobacterial Activity of the Secondary Metabolite Fraction Derived from Endophytic Bacterium Bacillus Velezensis Strain DJ4 Isolated from Archidendron Pauciflorum”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2055-63. https://doi.org/10.12991/jrespharm.1766279.
EndNote Sinarawadi GS, Priyanto JA, Prastya ME, Tachrim ZP (September 1, 2025) Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum. Journal of Research in Pharmacy 29 5 2055–2063.
IEEE G. S. Sinarawadi, J. A. Priyanto, M. E. Prastya, and Z. P. Tachrim, “Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum”, J. Res. Pharm., vol. 29, no. 5, pp. 2055–2063, 2025, doi: 10.12991/jrespharm.1766279.
ISNAD Sinarawadi, Genia Sotya et al. “Antimycobacterial Activity of the Secondary Metabolite Fraction Derived from Endophytic Bacterium Bacillus Velezensis Strain DJ4 Isolated from Archidendron Pauciflorum”. Journal of Research in Pharmacy 29/5 (September2025), 2055-2063. https://doi.org/10.12991/jrespharm.1766279.
JAMA Sinarawadi GS, Priyanto JA, Prastya ME, Tachrim ZP. Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum. J. Res. Pharm. 2025;29:2055–2063.
MLA Sinarawadi, Genia Sotya et al. “Antimycobacterial Activity of the Secondary Metabolite Fraction Derived from Endophytic Bacterium Bacillus Velezensis Strain DJ4 Isolated from Archidendron Pauciflorum”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2055-63, doi:10.12991/jrespharm.1766279.
Vancouver Sinarawadi GS, Priyanto JA, Prastya ME, Tachrim ZP. Antimycobacterial activity of the secondary metabolite fraction derived from endophytic bacterium Bacillus velezensis strain DJ4 isolated from Archidendron pauciflorum. J. Res. Pharm. 2025;29(5):2055-63.