Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 4, 1551 - 1561, 05.07.2025
https://doi.org/10.12991/jrespharm.1734670

Abstract

References

  • Adriadi A, Asra R, Solikah S. Studi Etnobotani Tumbuhan Obat Masyarakat Kelurahan Kembang Paseban Kecamatan Mersam Kabupaten Batanghari. Jurnal Belantara. 2022; 5(2). https://doi.org/10.29303/jbl.v5i2.881
  • Widodo H, Rohman A, Sismindari S. Pemanfaatan Tumbuhan Famili Fabaceae untuk Pengobatan Penyakit Liver oleh Pengobat Tradisional Berbagai Etnis di Indonesia. Media Penelitian dan Pengembangan Kesehatan. 2019; 29(1): 65–88. https://doi.org/10.22435/mpk.v29i1.538
  • Dave H, Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resour. 2012; 3(3): 291–319.
  • Sakunpak A, Sirikatitham A, Panichayupakaranant P. Preparation of anthraquinone high-yielding Senna alata extract and its stability. Pharm Biol. 2009; 47(3): 236–241. https://doi.org/10.1080/13880200802434757
  • Chatsiriwej N, Wungsintaweekul J, Panichayupakaranant P. Anthraquinone production in Senna alata. root cultures. Pharm Biol. 2006; 44(6): 416–420. https://doi.org/10.1080/13880200600794154
  • Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014; 28(7): 1014–1021. https://doi.org/10.1002/PTR.5090
  • Huang P H, Huang CY, Chen MC, Lee YT, Yue CH, Wang HY, Lin Ho. Emodin and aloe-emodin suppress breast cancer cell proliferation through erα ınhibition. Evid Based Complement Alternat Med. 2013;2013:376123. https://doi.org/10.1155/2013/376123
  • Ni Q, Sun K, Chen G, Shang D. In vitro effects of emodin on peritoneal macrophages that express membrane-bound CD14 protein in a rat model of severe acute pancreatitis/systemic inflammatory response syndrome. Mol Med Rep. 2014; 9(1): 355–359. https://doi.org/10.3892/MMR.2013.1771
  • Qian ZJ, Zhang C, Li YX, Je JY, Kim SK, Jung WK. Protective effects of emodin and chrysophanol ısolated from marine fungus Aspergillus sp. on ethanol-ınduced toxicity in HepG2/CYP2E1 Cells. Evid Based Complement Alternat Med. 2011;2011:452621. https://doi.org/10.1155/2011/452621
  • Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 2011; 90(1): 64. https://doi.org/10.1016/J.ANTIVIRAL.2011.02.008
  • Yang T, Kong B, Kuang Y, Cheng L, Gu J, Zhang J, Shu H, Yu S, Yang X, Cheng J, Huang H. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1). Int J Clin Exp Pathol. 2015; 8(3): 3418.
  • Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun. 2007; 353(2): 225–230. https://doi.org/10.1016/J.BBRC.2006.11.134
  • Duval J, Pecher V, Poujol M, Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind Crops Prod. 2016; 94: 812–833. https://doi.org/10.1016/j.indcrop.2016.09.056
  • Fatmawati S, Setyo Purnomo A, Fadzelly Abu Bakar M, Pagoh T, Panchor J. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020 ;6(7):e04396. https://doi.org/10.1016/j.heliyon.2020.e04396
  • Arvindekar AU, Pereira GR, Laddha KS. Assessment of conventional and novel extraction techniques on extraction efficiency of five anthraquinones from Rheum emodi. J Food Sci Technol. 2015;52(10):6574-6582. https://doi.org/10.1007/s13197-015-1814-3
  • Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013; 766: 61–68. https://doi.org/10.1016/J.ACA.2012.12.019
  • Promila, Singh S. Applications of green solvents in extraction of phytochemicals from medicinal plants: A review. The Pharma Innov J. 2018; 7(3): 238–245.
  • Wu YC, Wu P, Li YB, Liu TC, Zhang L, Zhou YH. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. RSC Adv. 2018; 8(27): 15069–15077. https://doi.org/10.1039/C7RA13581E
  • Breig SJM, Luti KJK. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater Today: Proceed. 2021; 42:2277-2284. https://doi.org/10.1016/j.matpr.2020.12.316
  • Cano-Lamadrid M, Martínez-Zamora L, Mozafari L, Bueso MC, Kessler M, Artés-Hernández F. response surface methodology to optimize the extraction of carotenoids from horticultural by-products—A systematic review. Foods. 2023; 12(24):4456. https://doi.org/10.3390/foods12244456
  • Fukuda IM, Pinto CFF, Moreira CS, Saviano AM, Lourenço FR. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazil J Pharm Sci. 2018; 54(Special):e01006. https://doi.org/10.1590/s2175-97902018000001006
  • Xu Y, Wan Y, Liu F, Chen J, Tan T, Guo L. Simultaneous determination of seven anthraquinones in Cassiae semen by natural deep eutectic solvent extraction. Phytochem Anal. 2022; 33(8): 1246–1256. https://doi.org/10.1002/pca.3176
  • Chisha G, Li C, Xiao L, Wang B, Chen Y, Cui Z. Multiscale mechanism exploration and experimental optimization for rosmarinic acid extraction from Rosmarinus officinalis using natural deep eutectic solvents. Ind Crops Prod. 2022; 188: 115637. https://doi.org/10.1016/J.INDCROP.2022.115637
  • Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med (United Kingdom). 2018; 13(1): 1–26. https://doi.org/10.1186/S13020-018-0177-X/FIGURES/13
  • Söğütlü İ, Saeed SM, Adil M, Yadav A, Abdulkareem Mahmood E, Saadh MJ. Extraction of some essential amino acids using aqueous two-phase systems made by sugar-based deep eutectic solvents. RSC Adv. 2023; 13(29): 19674– 19681. https://doi.org/10.1039/D3RA03092J
  • Panichayupakaranant P, Sakunpak A, Sakunphueak A. Quantitative HPLC determination and extraction. J Chromatogr Sci. 2009;47(3):197-200. https://doi.org/10.1093/chromsci/47.3.197.
  • Qian G, Leung SY, Lu G,Leung KSY. Differentiation of rhizoma et radix Polygoni cuspidati from closely related herbs by HPLC fingerprinting. Chem Pharm Bull (Tokyo). 2006; 54(8): 1179–1186. https://doi.org/10.1248/cpb.54.1179.
  • Aung WW, Panich K, Watthanophas S, Naridsirikul S, Ponphaiboon J, Krongrawa W, Kulpicheswanich P, Limmatvapirat S, Limmatvapirat C. Preparation of bioactive de-chlorophyll rhein-rich Senna alata extract. Antibiotics (Basel). 2023;12(1):181. https://doi.org/10.3390/antibiotics12010181.
  • Wilson RE, Groskreutz SR, Weber SG. Improving the sensitivity, resolution, and peak capacity of gradient elution in capillary liquid chromatography with large-volume ınjections by using temperature-assisted on-column solute focusing. Anal Chem. 2016; 88(10): 5112–5121. https://doi.org/10.1021/ACS.ANALCHEM.5B04793/SUPPL_FILE/AC5B04793_SI_001.PDF
  • Molnar M, Gašo-Sokač D, Komar M, Jakovljević Kovač M, Bušić V. Potential of deep eutectic solvents in the extraction of organic compounds from food ındustry by-products and agro-ındustrial waste. Separations 2024; 11(1): 35. https://doi.org/10.3390/SEPARATIONS11010035
  • Jauregi P, Esnal-Yeregi L, Labidi J. Natural deep eutectic solvents (NADES) for the extraction of bioactives: emerging opportunities in biorefinery applications. Peer J Anal Chem. 2024; 6:e32. https://doi.org/10.7717/peerj-achem.32
  • Hong Z, Guigan F, Hua Z, Kun L. Determination of anthraquinone content in lac dye through combined spectrophotometry and HPCE. Procedia Eng. 2011; 18: 86–94. https://doi.org/10.1016/j.proeng.2011.11.014
  • Sakulpanich A, Gritsanapan W. Extraction method for high content of anthraquinones from Cassia fistula pods. J Health Res. 2008; 22(4): 167–172.

Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction

Year 2025, Volume: 29 Issue: 4, 1551 - 1561, 05.07.2025
https://doi.org/10.12991/jrespharm.1734670

Abstract

Emodin is a bioactive compound found in Cassia alata leaves, which has several pharmacological effects.
However, the current extraction methods for these leaves produce a low yield of emodin. Deep eutectic solvent (DES),
with their numerous advantages, could be a strategy to increase the yield of emodin during the extraction process. The
objective of this research was to enhance the yield of emodin from the extraction of Cassia alata leaves using DES. After
evaluating various DES combinations, the selected DES was found to be lactic acid:choline chloride (2:1). To determine
optimal extraction conditions, response surface methodology with Box Behnken Design was employed. The results
indicate that the highest total anthraquinone content was obtained at extraction temperature of 53°C, extraction time of
19 minutes, and a solid-to-solvent ratio of 1:20 g/mL. Additionally, partial method validation was conducted for the
quantification of emodin in Cassia alata leaves using LC-UV instrumentation. The validated method employed the
following conditions: isocratic mobile phase of 2% acetic acid:methanol (30:70), flow rate of 0.8 mL/min, wavelength of
288 nm, and C-18 column (150 mm x 4.6 mm, 5 µm). The emodin and total anthraquinone content in the Cassia alata leaf
extract using the selected DES were higher compared to ethanol extract using the same extraction method. In conclusion,
the DES solvent (lactic acid:choline chloride in molar ratio 2:1) can be utilized as an alternative solvent in the extraction
of Cassia alata leaves, which is more effective and efficient in enhancing emodin yield compared to conventional ethanol
solvents.

References

  • Adriadi A, Asra R, Solikah S. Studi Etnobotani Tumbuhan Obat Masyarakat Kelurahan Kembang Paseban Kecamatan Mersam Kabupaten Batanghari. Jurnal Belantara. 2022; 5(2). https://doi.org/10.29303/jbl.v5i2.881
  • Widodo H, Rohman A, Sismindari S. Pemanfaatan Tumbuhan Famili Fabaceae untuk Pengobatan Penyakit Liver oleh Pengobat Tradisional Berbagai Etnis di Indonesia. Media Penelitian dan Pengembangan Kesehatan. 2019; 29(1): 65–88. https://doi.org/10.22435/mpk.v29i1.538
  • Dave H, Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resour. 2012; 3(3): 291–319.
  • Sakunpak A, Sirikatitham A, Panichayupakaranant P. Preparation of anthraquinone high-yielding Senna alata extract and its stability. Pharm Biol. 2009; 47(3): 236–241. https://doi.org/10.1080/13880200802434757
  • Chatsiriwej N, Wungsintaweekul J, Panichayupakaranant P. Anthraquinone production in Senna alata. root cultures. Pharm Biol. 2006; 44(6): 416–420. https://doi.org/10.1080/13880200600794154
  • Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014; 28(7): 1014–1021. https://doi.org/10.1002/PTR.5090
  • Huang P H, Huang CY, Chen MC, Lee YT, Yue CH, Wang HY, Lin Ho. Emodin and aloe-emodin suppress breast cancer cell proliferation through erα ınhibition. Evid Based Complement Alternat Med. 2013;2013:376123. https://doi.org/10.1155/2013/376123
  • Ni Q, Sun K, Chen G, Shang D. In vitro effects of emodin on peritoneal macrophages that express membrane-bound CD14 protein in a rat model of severe acute pancreatitis/systemic inflammatory response syndrome. Mol Med Rep. 2014; 9(1): 355–359. https://doi.org/10.3892/MMR.2013.1771
  • Qian ZJ, Zhang C, Li YX, Je JY, Kim SK, Jung WK. Protective effects of emodin and chrysophanol ısolated from marine fungus Aspergillus sp. on ethanol-ınduced toxicity in HepG2/CYP2E1 Cells. Evid Based Complement Alternat Med. 2011;2011:452621. https://doi.org/10.1155/2011/452621
  • Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 2011; 90(1): 64. https://doi.org/10.1016/J.ANTIVIRAL.2011.02.008
  • Yang T, Kong B, Kuang Y, Cheng L, Gu J, Zhang J, Shu H, Yu S, Yang X, Cheng J, Huang H. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1). Int J Clin Exp Pathol. 2015; 8(3): 3418.
  • Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun. 2007; 353(2): 225–230. https://doi.org/10.1016/J.BBRC.2006.11.134
  • Duval J, Pecher V, Poujol M, Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind Crops Prod. 2016; 94: 812–833. https://doi.org/10.1016/j.indcrop.2016.09.056
  • Fatmawati S, Setyo Purnomo A, Fadzelly Abu Bakar M, Pagoh T, Panchor J. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020 ;6(7):e04396. https://doi.org/10.1016/j.heliyon.2020.e04396
  • Arvindekar AU, Pereira GR, Laddha KS. Assessment of conventional and novel extraction techniques on extraction efficiency of five anthraquinones from Rheum emodi. J Food Sci Technol. 2015;52(10):6574-6582. https://doi.org/10.1007/s13197-015-1814-3
  • Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013; 766: 61–68. https://doi.org/10.1016/J.ACA.2012.12.019
  • Promila, Singh S. Applications of green solvents in extraction of phytochemicals from medicinal plants: A review. The Pharma Innov J. 2018; 7(3): 238–245.
  • Wu YC, Wu P, Li YB, Liu TC, Zhang L, Zhou YH. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. RSC Adv. 2018; 8(27): 15069–15077. https://doi.org/10.1039/C7RA13581E
  • Breig SJM, Luti KJK. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater Today: Proceed. 2021; 42:2277-2284. https://doi.org/10.1016/j.matpr.2020.12.316
  • Cano-Lamadrid M, Martínez-Zamora L, Mozafari L, Bueso MC, Kessler M, Artés-Hernández F. response surface methodology to optimize the extraction of carotenoids from horticultural by-products—A systematic review. Foods. 2023; 12(24):4456. https://doi.org/10.3390/foods12244456
  • Fukuda IM, Pinto CFF, Moreira CS, Saviano AM, Lourenço FR. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazil J Pharm Sci. 2018; 54(Special):e01006. https://doi.org/10.1590/s2175-97902018000001006
  • Xu Y, Wan Y, Liu F, Chen J, Tan T, Guo L. Simultaneous determination of seven anthraquinones in Cassiae semen by natural deep eutectic solvent extraction. Phytochem Anal. 2022; 33(8): 1246–1256. https://doi.org/10.1002/pca.3176
  • Chisha G, Li C, Xiao L, Wang B, Chen Y, Cui Z. Multiscale mechanism exploration and experimental optimization for rosmarinic acid extraction from Rosmarinus officinalis using natural deep eutectic solvents. Ind Crops Prod. 2022; 188: 115637. https://doi.org/10.1016/J.INDCROP.2022.115637
  • Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med (United Kingdom). 2018; 13(1): 1–26. https://doi.org/10.1186/S13020-018-0177-X/FIGURES/13
  • Söğütlü İ, Saeed SM, Adil M, Yadav A, Abdulkareem Mahmood E, Saadh MJ. Extraction of some essential amino acids using aqueous two-phase systems made by sugar-based deep eutectic solvents. RSC Adv. 2023; 13(29): 19674– 19681. https://doi.org/10.1039/D3RA03092J
  • Panichayupakaranant P, Sakunpak A, Sakunphueak A. Quantitative HPLC determination and extraction. J Chromatogr Sci. 2009;47(3):197-200. https://doi.org/10.1093/chromsci/47.3.197.
  • Qian G, Leung SY, Lu G,Leung KSY. Differentiation of rhizoma et radix Polygoni cuspidati from closely related herbs by HPLC fingerprinting. Chem Pharm Bull (Tokyo). 2006; 54(8): 1179–1186. https://doi.org/10.1248/cpb.54.1179.
  • Aung WW, Panich K, Watthanophas S, Naridsirikul S, Ponphaiboon J, Krongrawa W, Kulpicheswanich P, Limmatvapirat S, Limmatvapirat C. Preparation of bioactive de-chlorophyll rhein-rich Senna alata extract. Antibiotics (Basel). 2023;12(1):181. https://doi.org/10.3390/antibiotics12010181.
  • Wilson RE, Groskreutz SR, Weber SG. Improving the sensitivity, resolution, and peak capacity of gradient elution in capillary liquid chromatography with large-volume ınjections by using temperature-assisted on-column solute focusing. Anal Chem. 2016; 88(10): 5112–5121. https://doi.org/10.1021/ACS.ANALCHEM.5B04793/SUPPL_FILE/AC5B04793_SI_001.PDF
  • Molnar M, Gašo-Sokač D, Komar M, Jakovljević Kovač M, Bušić V. Potential of deep eutectic solvents in the extraction of organic compounds from food ındustry by-products and agro-ındustrial waste. Separations 2024; 11(1): 35. https://doi.org/10.3390/SEPARATIONS11010035
  • Jauregi P, Esnal-Yeregi L, Labidi J. Natural deep eutectic solvents (NADES) for the extraction of bioactives: emerging opportunities in biorefinery applications. Peer J Anal Chem. 2024; 6:e32. https://doi.org/10.7717/peerj-achem.32
  • Hong Z, Guigan F, Hua Z, Kun L. Determination of anthraquinone content in lac dye through combined spectrophotometry and HPCE. Procedia Eng. 2011; 18: 86–94. https://doi.org/10.1016/j.proeng.2011.11.014
  • Sakulpanich A, Gritsanapan W. Extraction method for high content of anthraquinones from Cassia fistula pods. J Health Res. 2008; 22(4): 167–172.
There are 33 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Articles
Authors

Prisnu Tirtanirmala This is me

Abdul Mun`im This is me

Firdayani Firdayani This is me

Publication Date July 5, 2025
Submission Date May 23, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Tirtanirmala, P., Mun`im, A., & Firdayani, F. (2025). Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction. Journal of Research in Pharmacy, 29(4), 1551-1561. https://doi.org/10.12991/jrespharm.1734670
AMA Tirtanirmala P, Mun`im A, Firdayani F. Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction. J. Res. Pharm. July 2025;29(4):1551-1561. doi:10.12991/jrespharm.1734670
Chicago Tirtanirmala, Prisnu, Abdul Mun`im, and Firdayani Firdayani. “Enhancing the Yield of Emodin from Cassia Alata L. Leaves Using Ultrasound-Assisted Deep Eutectic Solvent Extraction”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1551-61. https://doi.org/10.12991/jrespharm.1734670.
EndNote Tirtanirmala P, Mun`im A, Firdayani F (July 1, 2025) Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction. Journal of Research in Pharmacy 29 4 1551–1561.
IEEE P. Tirtanirmala, A. Mun`im, and F. Firdayani, “Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction”, J. Res. Pharm., vol. 29, no. 4, pp. 1551–1561, 2025, doi: 10.12991/jrespharm.1734670.
ISNAD Tirtanirmala, Prisnu et al. “Enhancing the Yield of Emodin from Cassia Alata L. Leaves Using Ultrasound-Assisted Deep Eutectic Solvent Extraction”. Journal of Research in Pharmacy 29/4 (July2025), 1551-1561. https://doi.org/10.12991/jrespharm.1734670.
JAMA Tirtanirmala P, Mun`im A, Firdayani F. Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction. J. Res. Pharm. 2025;29:1551–1561.
MLA Tirtanirmala, Prisnu et al. “Enhancing the Yield of Emodin from Cassia Alata L. Leaves Using Ultrasound-Assisted Deep Eutectic Solvent Extraction”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1551-6, doi:10.12991/jrespharm.1734670.
Vancouver Tirtanirmala P, Mun`im A, Firdayani F. Enhancing the yield of emodin from Cassia alata L. leaves using ultrasound-assisted deep eutectic solvent extraction. J. Res. Pharm. 2025;29(4):1551-6.