Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 4, 1760 - 1774, 05.07.2025
https://doi.org/10.12991/jrespharm.1734921

Abstract

References

  • [1] Abdel-Aziz SM, Prasad R, El Enshasy H. and Sukmawati D. Prospects of microbial nanotechnology for promoting climate resilient agriculture. In : Nanoparticles and Plant-Microbe Interactions. Seena S, Rai R, Kumar S, Eds. Elsevier, 2023; pp.163–186. https://doi.org/10.1016/B978-0-323-90619-7.00006-0 their use
  • [2] Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SE-D, Eid AM, Shaheen TI, Elkelish A. and Fouda A. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and as coating https://doi.org/10.3390/nano10102082 for the textile fabrics. Nanomaterials.2020; 10(10): 2082.
  • [3] Abdel-Rahim RD, Al-Ansari SH, Ali GAM, Hassane AMA, Kamoun EA, Gomaa H. and Nagiub AM. A hybrid nanocomposite of silver nanoparticles embedded with end-of-life battery-derived sheets-like nitrogen and sulfur-doped reduced-graphene oxide for water treatment and antimicrobial applications. Water, Air, and Soil Pollution. 2024; 235: 623. https://doi.org/10.1007/s11270-024-07387-9
  • [4] Kamal A, Hassane AMA, An C, Deng Q, Hu N, Abolibda TZ, Altaleb HA, Gomha SM, Selim MM, Shenashen MA. and Gomaa H. Developing a cost-efective and eco-friendly adsorbent/photocatalyst using biomass and urban waste for crystal violet removal and antimicrobial applications. Biomass Convers Biorefinery. 2024; 2204: 1-19. https://doi.org/10.1007/s13399-024-05850-5
  • [5] Salem SS. Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol. 2022; 194: 1898–1910. https://doi.org/10.1007/s12010-022-03809 8
  • [6] Abo-Dahab NF, Abdel-Hadi AM, Abdul-Raouf UM, El-Shanawany AA. and Hassane AMA. Qualitative detection of aflatoxins and aflatoxigenic fungi in wheat flour from different regions of Egypt. IOSR J Environ Sci Toxicol Food Technol. 2016; 10(7–II): 20-26. https://doi.org/10.9790/2402-1007022026.
  • [7] Hassane AMA, Hussien SM, Abouelela ME, Taha, TM, Awad MF, Mohamed H, Hassan MM, Hassan MHA, Abo Dahab NF. and El-Shanawany A-RA. In vitro and in silico antioxidant efficiency of bio-potent secondary metabolites from different taxa of black seed-producing plants and their derived mycoendophytes. Front Bioeng Biotechnol. 2022; 10: 930161. https://doi.org/10.3389/fbioe.2022.930161
  • [8] Mohamed H, Awad MF, Shah AM, Nazir Y, Naz T, Hassane A, Nosheen S. and Song Y. Evaluation of different standard amino acids to enhance the biomass, lipid, fatty acid, and γ-linolenic acid production in Rhizomucor pusillus and Mucor circinelloides. Front Nutr. 2022; 9: 876817. http://doi.org/10.3389/fnut.2022.876817
  • [9] Al Mousa AA, Abo-Dahab NF, Hassane AMA, Gomaa AF, Aljuriss JA. and Dahmash ND. (2022). Harnessing Mucor spp. for xylanase production: Statistical optimization in submerged fermentation using agro-industrial wastes. BioMed Res Int. 2022: 3816010. https://doi.org/10.1155/2022/3816010
  • [10] Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND. and Abo-Dahab NF. Cytotoxic potential of Alternaria tenuissima AUMC14342 mycoendophyte extract: A study combined with LC-MS/MS metabolic profiling and molecular docking simulation. Curr Issue Mol Biol. 2022; 44: 5067–5085. https://doi.org/10.3390/cimb44100344
  • [11] Al Mousa AA, Abouelela ME, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo-Dahab NF. and Hassane AMA. Anti-staphylococcal, anti-Candida, and free-radical scavenging potential of soil fungal metabolites: A study supported by phenolic characterization and molecular docking analysis. Curr Issue Mol Biol. 2024; 46: 221–243. https://doi.org/10.3390/cimb46010016
  • [12] Al Mousa AA, Abouelela ME, Mansour A, Nasr M, Ali YH, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo Dahab NF. and Hassane AMA. Wound healing, metabolite profiling, and in silico studies of Aspergillus terreus. Curr Issue Mol Biol. 2024; 46: 11681–11699. https://doi.org/10.3390/cimb 46100694
  • [13] Abdelrahem MMM, Hassane AMA, Abouelela ME. and Abo-Dahab NF. Comparative bioactivity and metabolites produced by fungal co-culture system against myco-phytopathogens. J Environ Stud. 2023; 31(1): 1–15. https://doi.org/10.21608/jesj.2023.232560.1056
  • [14] Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012; 41(7): 2740–2779. https://doi.org/10.1039/C1CS15237H
  • [15] Botcha S. and Prattipati SD. Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. BioNanoSci. 2020; 10: 11–22. https://doi.org/10.1007/s12668-019-00683-3
  • [16] Kato Y, Suzuki M. Synthesis of metal nanoparticles by microorganisms. Crystals. 2020; 10(7): 589. https://doi.org/10.3390/cryst10070589
  • [17] Fatima F, Verma SR, Pathak N, Bajpai P. Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Res. 2016; 7: 88–92. https://doi.org/10.1016/j.jgar.2016.07.013
  • [18] Jaidev LR. and Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerface. 2010; 81(2): 430–433. https://doi.org/10.1016/j.colsurfb.2010.07.033
  • [19] Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol. 2011; 2(1): 112–121. https://doi.org/10.3844/ajnsp.2011.112.121
  • [20] Yusof HM, Mohamad R, Zaidan UH. and Abdul Rahman N. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Animal Sci Biotechnol. 2019; 10: 1–22. https://doi.org/10.1186/s40104-019-0368-z
  • [21] Shkryl YN, Veremeichik GN, Kamenev DG, Gorpenchenko TY, Yugay YA, Mashtalyar DV, Nepomnyaschiy AV, Avramenko TV, Karabtsov AA. and Ivanov VV. Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artif Cells Nanomed Biotechnol. 2018; 46(8): 1646–1658. https://doi.org/10.1080/21691401.2017.1388248
  • [22] Netala VR, Kotakadi VS, Domdi L, Gaddam SA, Bobbu P, Venkata SK, Ghosh SB. and Tartte V. Biogenic silver nanoparticles: Efficient and effective antifungal agents. Appl Nanosci. 2016; 6: 475–484. https://doi.org/10.1007/s13204-015-0463-1
  • [23] Fahimirad S, Ajalloueian F. and Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Safe. 2019; 168: 260–278. https://doi.org/10.1016/j.ecoenv.2018.10.017
  • [24] Abdel-Hadi AM, Awad MF, Abo-Dahab NF, Elkady MF. Extracellular synthesis of silver nanoparticles by Aspergillus terreus: Biosynthesis, characterization and biological activity. Biosci Biotechnol Res Asia. 2014; 11(3): 1179–1186. https://doi.org/10.13005/bbra/1503
  • [25] Ottoni CA, Simões MF, Fernandes S, Dos Santos JG, Da Silva ES, de Souza RFB, Maiorano AE. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017; 7(1): 1–10. https://doi.org/10.1186/s13568-017-0332-2
  • [26] Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q. and Yang H. Fungal silver nanoparticles: Synthesis, application and challenges. Crit Rev Biotechnol. 2018; 38(6): 817–835. https://doi.org/10.1080/07388551.2017.1414141
  • [27] Gudikandula K, Vadapally P, Charya MAS. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano. 2017; 2: 64–78. https://doi.org/10.1016/j.onano.2017.07.002
  • [28] Hassane AMA, Taha TM, Awad MF, Mohamed H, Melebari M. Radical scavenging potency, HPLC profiling and phylogenetic analysis of endophytic fungi isolated from selected medicinal plants of Saudi Arabia. E-J Biotechnol. 2022; 58: 37–45. https://doi.org/10.1016/j.ejbt.2022.05.001
  • [29] Lazreg F, Belabid L, Sanchez J, Gallego E, Garrido-Cardenas JA, Elhaitoum A. First report of Fusarium chlamydosporum causing damping-off disease on Aleppo pine in Algeria. Plant Dis. 2013; 97(11): 1506. https://doi.org/10.1094/PDIS-02-13-0208-PDN
  • [30] Mohamed H, Awad MF, Shah AM, Sadaqat B, Nazir Y, Naz T, Yang W, Song Y. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production. Sci Rep. 2022; 12(1): 13111. http://doi.org/10.1038/s41598-022-17442-2
  • [31] Mazrou YS, Makhlouf AH, Elbealy ER, Salem MA, Farid MA, Awad MF, Hassan MM, Ismail M. Molecular characterization of phosphate solubilizing fungi Aspergillus niger and its correlation to sustainable agriculture. J Environ Biol. 2020; 41(3): 592–599. http://doi.org/10.22438/jeb/41/3/MRN-1298
  • [32] Baymiller M, Huang F, Rogelj S. Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters. 2017. 10081794: 1-4. https://doi.org/10.19185/matters.201705000007
  • [33] Lotfy WA, Alkersh BM, Sabry SA, Ghozlan HA. Biosynthesis of silver nanoparticles by Aspergillus terreus: Characterization, optimization, and biological activities. Front Bioeng Biotechnol. 2021; 9: 633468. https://doi.org/10.3389/fbioe.2021.633468
  • [34] Mossa MI, Gezaf SA, Ibrahim AA, Hamedo HA. Preliminary screening of endophytic fungi hosted some wild plants in North Sinai for biogenic production of silver nanoparticles. Microb Biosyst. 2023; 8(2): 57–73. https://doi.org/10.21608/mb.2024.341385
  • [35] Rose GK, Soni R, Rishi P, Soni SK. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process Synth. 2019; 8(1): 144–156. https://doi.org/10.1515/gps-2018-0042
  • [36] Hashem AH, Saied E, Amin BH, Alotibi FO, Al-Askar AA, Arishi AA, Elkady FM. and Elbahnasawy MA. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing aspergillosis: Ultrastructure study. J Funct Biomater. 2022; 13(4): 242. https://doi.org/10.3390/jfb13040242
  • [37] Saied E, Hussein AS, Al-Askar AA, Elhussieny NI, Hashem AH. Therapeutic effect of biosynthesized silver nanoparticles on hypothyroidism induced in albino rats. E-J Biotechnol. 2023; 65: 14–23. https://doi.org/10.1016/j.ejbt.2023.06.001
  • [38] Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 2016; 182: 8–20. https://doi.org/10.1016/j.micres.2015.09.009
  • [39] Nasrollahzadeh M. and Sajadi SM. Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: catalytic activity for cyanation of aryl iodides under ligand-free conditions. J Colloid Interface Sci. 2016; 469: 191–195. https://doi.org/10.1016/j.jcis.2016.02.024
  • [40] Divyalakshmi MV, Thoppil JE. Comparitive study on instrumental characteristics and antibacterial efficacy of green synthesized silver nanoparticles from two pharmacologically important Garcinia species: Garcinia conicarpa and Garcinia cambogioides of Western Ghats. Nanotechnol Environ Eng. 2023; 8(3): 717–732. https://doi.org/10.1007/s41204-023-00320-1
  • [41] Al-Shmgani HAS, Mohammed WH, Sulaiman GM, Saadoon AH. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cell Nanomed Biotechnol. 2017; 45(6): 1234–1240. https://doi.org/10.1080/21691401.2016.1220950
  • [42] Naini D, Kumar G, Rawat G, Kapoor S, Kumar R. Process optimization for biogenesis of silver nanoparticles from Aspergillus flavus GGRK1 culture filtrate : Characterization and its antibacterial efficacy. Nanofabrication. 2024; 9: 1 16. https://doi.org/10.37819/nanofab.009.1798
  • [43] Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A: Mol Biomol Spectrosc. 2009; 73(2): 374–381. https://doi.org/10.1016/j.saa.2009.02.037
  • [44] Saied E, Abdel-Maksoud MA, Alfuraydi AA, Kiani BH, Bassyouni M, Al-Qabandi OA, Bougafa FHE, Badawy MSEM, Hashem AH. Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Front Microbiol. 2024; 15: 1–14. https://doi.org/10.3389/fmicb.2024.1345423
  • [45] Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal mediated biosynthesis of silver nanoparticles and evaluation of its antibacterial and wound-healing efficacy. Int J Mol Sci. 2024; 25(2): 861. https://doi.org/10.3390/ijms25020861
  • [46] Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd-Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules. 2018;23(3): 655. https://doi.org/10.3390/molecules23030655
  • [47] Priyadarshni KC, Krishnamoorthi R, Mumtha C, Mahalingam PU. Biochemical analysis of cultivated mushroom, Pleurotus florida and synthesis of silver nanoparticles for enhanced antimicrobial effects on clinically important human pathogens. Inorg Chem Commun. 2022; 142: 109673. https://doi.org/10.1016/j.inoche.2022.109673
  • [48] Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnol Biol Med. 2010; 6(5): 681–688. https://doi.org/10.1016/j.nano.2010.02.001
  • [49] Saber SM, Youssef MS, Arafa RF, Hassane AM. Mycotoxins production by Aspergillus ostianus Wehmer and using phytochemicals as control agent. J Sci Eng Res. 2016; 3(2): 198–213.
  • [50] Abdelrahem MMM. Abouelela ME, Abo-Dahab NF, Hassane AMA. Aspergillus-Penicillium co-culture: An investigation of bioagents for controlling Fusarium proliferatum-induced basal rot in onion. AIMS Microbiol. 2024; 10(4): 1024–1051. https://doi.org/10.3934/microbiol.2024044
  • [51] Han JW, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Kim J-H. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett. 2014; 9: 1–14. https://doi.org/10.1186/1556-276X-9-459
  • [52] Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008; 3: 129 133. https://doi.org/10.1007/s11671-008-9128-2
  • [53] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2025; 16(10): 2346. https://doi.org/10.1088/0957-4484/16/10/059
  • [54] Gharpure S, Yadwade R, Ankamwar B. Non-antimicrobial and non-anticancer properties of ZnO nanoparticles biosynthesized using different plant parts of Bixa orellana. ACS Omega. 2022; 7(2): 1914-1933. https://doi.org/10.1021/acsomega.1c05324
  • [55] Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, Nadeem M, Hano C, Lorenzo JM, Abbasi BH. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers. 2021; 13: 2818. https://doi.org/10.3390/ cancers13112818
  • [56] Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Converg. 2020; 7: 14. https://doi.org/10.1186/s40580-020-00224-9
  • [57] Moubasher AH, El-Naghy MA, Abdel-Hafez SII. Studies on the fungus flora of three grains in Egypt. Mycopathol Mycol Appl. 1972; 47: 261–274. https://doi.org/10.1007/BF02051664
  • [58] Mohamed H, El-Shanawany A, Shah AM, Nazir Y, Naz T, Ullah S, Mustafa K, Song Y. Comparative analysis of different isolated oleaginous Mucoromycota fungi for their γ-linolenic acid and carotenoid production. BioMed Res Int. 2020: 3621543. https://doi.org/10.1155/2020/3621543
  • [59] Devi L, Joshi S. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastr. 2015; 3(1): 29. https://doi.org/10.1016/j.jmau.2014.10.004
  • [60] Yassin MA, Elgorban AM, El-Samawaty AE-RMA, Almunqedhi BMA. Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity. Saudi J Biol Sci. 2021; 28(4): 2123–2127. https://doi.org/10.1016/j.sjbs.2021.01.063
  • [61] Khalaf NH, Hassane AMA, El-Deeb BA, Abo-Dahab NF. Antimicrobial efficacy mediated by mycogenic and characterized selenium nanoparticles. Sohag J Sci. 2024; 9(3): 255 260. https://doi.org/10.21608/sjsci.2024.254285.1161
  • [62] Al Mousa AA, Mohamed H, Hassane AMA, Abo-Dahab NF. Antimicrobial and cytotoxic potential of an endophytic fungus Alternaria tenuissima AUMC14342 isolated from Artemisia judaica L. growing in Saudi Arabia. J King Saud Univ-Sci. 2021; 33: 101462. https://doi.org/10.1016/j.jksus.2021.101462
  • [63] Mohamed H, Hassane A, Rawway M, El‑Sayed M, Gomaa A, Abdul‑Raouf U, Shah AM, Abdelmotaal H, Song Y. Antibacterial and cytotoxic potency of thermophilic Streptomyces werraensis MI‑S.24‑3 isolated from an Egyptian extreme environment. Arch Microbiol. 2021; 203: 4961–4972. https://doi.org/10.1007/s00203-021-02487-0
  • [64] Jahangirian H, Haron MDJ, Shah MH, Abdollahi Y, Rezayi M, Vafaei N. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Digest J Nanomater Biostuctr. 2013; 8(3): 1263–1270.
  • [65] Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evid-Based Complement Altern Med, 2019; 2019: 6212673. https://doi.org/10.1155/2019/6212673
  • [66] Moshi MJ, Van den Beukel C, Hamza OJ, Mbwambo ZH, Nondo RO, Masimba PJ, Matee M, Kapingu MC, Mikx F, Verweije P. Brine shrimp toxicity evaluation of some Tanzanian plants used traditionally for the treatment of fungal infections. Afr J Tradit Complement Altern Med. 2007; 4(2): 219-225. https://doi.org/10.4314/ajtcam.v4i2.31211
  • [67] Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Nat Cancer Inst. 1990; 82(13): 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  • [68] Alsehli BR, Hassan MHA, Mohamed DS, Saddik MS, Al-Hakkani MF. Enhanced cytotoxic efficacy against MCF-7 and HCT116 cell lines and high-performance cefoperazone removal using biogenically synthesized CeO2 nanoparticles. J Mol Struct. 2024; 1318: 139261. https://doi.org/10.1016/j.molstruc.2024.139261

Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles

Year 2025, Volume: 29 Issue: 4, 1760 - 1774, 05.07.2025
https://doi.org/10.12991/jrespharm.1734921

Abstract

Nanobiotechnology is a grow-fast applied scientific discipline and has established straight forward shots in medicine, agriculture, and industry. Herein, an investigation on the myco-synthesis of silver nanoparticles (AgNPs) extracellularly by, soil molecularly identified strain, Aspergillus terreus was carried out. Bio-fabricated AgNPs were characterized and inspected for their antibacterial, antifungal, and cytotoxic potency. UV–Visible wave analysis of AgNPs revealed a surface plasmon resonance band at 427 nm. The TEM analysis exhibited spherical particles diameter size ranged between 11 and 30 nm, while AgNPsʼ crystalline nature was confirmed by XRD. Zeta potential value was found to be -16.4 with well dispersed and spherical particles with average size of 27.4 nm. At a concentration of 5000 µg/mL, AgNPs showed antimicrobial efficiency against subjected pathogenic bacterial and Candida species with MICs values ranging from 15.62 to 104.16 µg/mL for antibacterial potency and 125 to 104.16 µg/mL for anticandidal efficacy. Biogenic AgNPs cytotoxicity assay afforded cells viability of 17.8% against HepG2 cell line at 10 µg/mL, meanwhile Artemia salina LC50 mortality was established at 95.32 µg/mL. These findings suggest that biosynthesized AgNPs have promising potent cytotoxicity and antimicrobial issue for treating pathogenic infections.

References

  • [1] Abdel-Aziz SM, Prasad R, El Enshasy H. and Sukmawati D. Prospects of microbial nanotechnology for promoting climate resilient agriculture. In : Nanoparticles and Plant-Microbe Interactions. Seena S, Rai R, Kumar S, Eds. Elsevier, 2023; pp.163–186. https://doi.org/10.1016/B978-0-323-90619-7.00006-0 their use
  • [2] Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SE-D, Eid AM, Shaheen TI, Elkelish A. and Fouda A. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and as coating https://doi.org/10.3390/nano10102082 for the textile fabrics. Nanomaterials.2020; 10(10): 2082.
  • [3] Abdel-Rahim RD, Al-Ansari SH, Ali GAM, Hassane AMA, Kamoun EA, Gomaa H. and Nagiub AM. A hybrid nanocomposite of silver nanoparticles embedded with end-of-life battery-derived sheets-like nitrogen and sulfur-doped reduced-graphene oxide for water treatment and antimicrobial applications. Water, Air, and Soil Pollution. 2024; 235: 623. https://doi.org/10.1007/s11270-024-07387-9
  • [4] Kamal A, Hassane AMA, An C, Deng Q, Hu N, Abolibda TZ, Altaleb HA, Gomha SM, Selim MM, Shenashen MA. and Gomaa H. Developing a cost-efective and eco-friendly adsorbent/photocatalyst using biomass and urban waste for crystal violet removal and antimicrobial applications. Biomass Convers Biorefinery. 2024; 2204: 1-19. https://doi.org/10.1007/s13399-024-05850-5
  • [5] Salem SS. Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol. 2022; 194: 1898–1910. https://doi.org/10.1007/s12010-022-03809 8
  • [6] Abo-Dahab NF, Abdel-Hadi AM, Abdul-Raouf UM, El-Shanawany AA. and Hassane AMA. Qualitative detection of aflatoxins and aflatoxigenic fungi in wheat flour from different regions of Egypt. IOSR J Environ Sci Toxicol Food Technol. 2016; 10(7–II): 20-26. https://doi.org/10.9790/2402-1007022026.
  • [7] Hassane AMA, Hussien SM, Abouelela ME, Taha, TM, Awad MF, Mohamed H, Hassan MM, Hassan MHA, Abo Dahab NF. and El-Shanawany A-RA. In vitro and in silico antioxidant efficiency of bio-potent secondary metabolites from different taxa of black seed-producing plants and their derived mycoendophytes. Front Bioeng Biotechnol. 2022; 10: 930161. https://doi.org/10.3389/fbioe.2022.930161
  • [8] Mohamed H, Awad MF, Shah AM, Nazir Y, Naz T, Hassane A, Nosheen S. and Song Y. Evaluation of different standard amino acids to enhance the biomass, lipid, fatty acid, and γ-linolenic acid production in Rhizomucor pusillus and Mucor circinelloides. Front Nutr. 2022; 9: 876817. http://doi.org/10.3389/fnut.2022.876817
  • [9] Al Mousa AA, Abo-Dahab NF, Hassane AMA, Gomaa AF, Aljuriss JA. and Dahmash ND. (2022). Harnessing Mucor spp. for xylanase production: Statistical optimization in submerged fermentation using agro-industrial wastes. BioMed Res Int. 2022: 3816010. https://doi.org/10.1155/2022/3816010
  • [10] Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND. and Abo-Dahab NF. Cytotoxic potential of Alternaria tenuissima AUMC14342 mycoendophyte extract: A study combined with LC-MS/MS metabolic profiling and molecular docking simulation. Curr Issue Mol Biol. 2022; 44: 5067–5085. https://doi.org/10.3390/cimb44100344
  • [11] Al Mousa AA, Abouelela ME, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo-Dahab NF. and Hassane AMA. Anti-staphylococcal, anti-Candida, and free-radical scavenging potential of soil fungal metabolites: A study supported by phenolic characterization and molecular docking analysis. Curr Issue Mol Biol. 2024; 46: 221–243. https://doi.org/10.3390/cimb46010016
  • [12] Al Mousa AA, Abouelela ME, Mansour A, Nasr M, Ali YH, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo Dahab NF. and Hassane AMA. Wound healing, metabolite profiling, and in silico studies of Aspergillus terreus. Curr Issue Mol Biol. 2024; 46: 11681–11699. https://doi.org/10.3390/cimb 46100694
  • [13] Abdelrahem MMM, Hassane AMA, Abouelela ME. and Abo-Dahab NF. Comparative bioactivity and metabolites produced by fungal co-culture system against myco-phytopathogens. J Environ Stud. 2023; 31(1): 1–15. https://doi.org/10.21608/jesj.2023.232560.1056
  • [14] Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012; 41(7): 2740–2779. https://doi.org/10.1039/C1CS15237H
  • [15] Botcha S. and Prattipati SD. Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. BioNanoSci. 2020; 10: 11–22. https://doi.org/10.1007/s12668-019-00683-3
  • [16] Kato Y, Suzuki M. Synthesis of metal nanoparticles by microorganisms. Crystals. 2020; 10(7): 589. https://doi.org/10.3390/cryst10070589
  • [17] Fatima F, Verma SR, Pathak N, Bajpai P. Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Res. 2016; 7: 88–92. https://doi.org/10.1016/j.jgar.2016.07.013
  • [18] Jaidev LR. and Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerface. 2010; 81(2): 430–433. https://doi.org/10.1016/j.colsurfb.2010.07.033
  • [19] Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol. 2011; 2(1): 112–121. https://doi.org/10.3844/ajnsp.2011.112.121
  • [20] Yusof HM, Mohamad R, Zaidan UH. and Abdul Rahman N. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Animal Sci Biotechnol. 2019; 10: 1–22. https://doi.org/10.1186/s40104-019-0368-z
  • [21] Shkryl YN, Veremeichik GN, Kamenev DG, Gorpenchenko TY, Yugay YA, Mashtalyar DV, Nepomnyaschiy AV, Avramenko TV, Karabtsov AA. and Ivanov VV. Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artif Cells Nanomed Biotechnol. 2018; 46(8): 1646–1658. https://doi.org/10.1080/21691401.2017.1388248
  • [22] Netala VR, Kotakadi VS, Domdi L, Gaddam SA, Bobbu P, Venkata SK, Ghosh SB. and Tartte V. Biogenic silver nanoparticles: Efficient and effective antifungal agents. Appl Nanosci. 2016; 6: 475–484. https://doi.org/10.1007/s13204-015-0463-1
  • [23] Fahimirad S, Ajalloueian F. and Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Safe. 2019; 168: 260–278. https://doi.org/10.1016/j.ecoenv.2018.10.017
  • [24] Abdel-Hadi AM, Awad MF, Abo-Dahab NF, Elkady MF. Extracellular synthesis of silver nanoparticles by Aspergillus terreus: Biosynthesis, characterization and biological activity. Biosci Biotechnol Res Asia. 2014; 11(3): 1179–1186. https://doi.org/10.13005/bbra/1503
  • [25] Ottoni CA, Simões MF, Fernandes S, Dos Santos JG, Da Silva ES, de Souza RFB, Maiorano AE. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017; 7(1): 1–10. https://doi.org/10.1186/s13568-017-0332-2
  • [26] Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q. and Yang H. Fungal silver nanoparticles: Synthesis, application and challenges. Crit Rev Biotechnol. 2018; 38(6): 817–835. https://doi.org/10.1080/07388551.2017.1414141
  • [27] Gudikandula K, Vadapally P, Charya MAS. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano. 2017; 2: 64–78. https://doi.org/10.1016/j.onano.2017.07.002
  • [28] Hassane AMA, Taha TM, Awad MF, Mohamed H, Melebari M. Radical scavenging potency, HPLC profiling and phylogenetic analysis of endophytic fungi isolated from selected medicinal plants of Saudi Arabia. E-J Biotechnol. 2022; 58: 37–45. https://doi.org/10.1016/j.ejbt.2022.05.001
  • [29] Lazreg F, Belabid L, Sanchez J, Gallego E, Garrido-Cardenas JA, Elhaitoum A. First report of Fusarium chlamydosporum causing damping-off disease on Aleppo pine in Algeria. Plant Dis. 2013; 97(11): 1506. https://doi.org/10.1094/PDIS-02-13-0208-PDN
  • [30] Mohamed H, Awad MF, Shah AM, Sadaqat B, Nazir Y, Naz T, Yang W, Song Y. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production. Sci Rep. 2022; 12(1): 13111. http://doi.org/10.1038/s41598-022-17442-2
  • [31] Mazrou YS, Makhlouf AH, Elbealy ER, Salem MA, Farid MA, Awad MF, Hassan MM, Ismail M. Molecular characterization of phosphate solubilizing fungi Aspergillus niger and its correlation to sustainable agriculture. J Environ Biol. 2020; 41(3): 592–599. http://doi.org/10.22438/jeb/41/3/MRN-1298
  • [32] Baymiller M, Huang F, Rogelj S. Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters. 2017. 10081794: 1-4. https://doi.org/10.19185/matters.201705000007
  • [33] Lotfy WA, Alkersh BM, Sabry SA, Ghozlan HA. Biosynthesis of silver nanoparticles by Aspergillus terreus: Characterization, optimization, and biological activities. Front Bioeng Biotechnol. 2021; 9: 633468. https://doi.org/10.3389/fbioe.2021.633468
  • [34] Mossa MI, Gezaf SA, Ibrahim AA, Hamedo HA. Preliminary screening of endophytic fungi hosted some wild plants in North Sinai for biogenic production of silver nanoparticles. Microb Biosyst. 2023; 8(2): 57–73. https://doi.org/10.21608/mb.2024.341385
  • [35] Rose GK, Soni R, Rishi P, Soni SK. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process Synth. 2019; 8(1): 144–156. https://doi.org/10.1515/gps-2018-0042
  • [36] Hashem AH, Saied E, Amin BH, Alotibi FO, Al-Askar AA, Arishi AA, Elkady FM. and Elbahnasawy MA. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing aspergillosis: Ultrastructure study. J Funct Biomater. 2022; 13(4): 242. https://doi.org/10.3390/jfb13040242
  • [37] Saied E, Hussein AS, Al-Askar AA, Elhussieny NI, Hashem AH. Therapeutic effect of biosynthesized silver nanoparticles on hypothyroidism induced in albino rats. E-J Biotechnol. 2023; 65: 14–23. https://doi.org/10.1016/j.ejbt.2023.06.001
  • [38] Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 2016; 182: 8–20. https://doi.org/10.1016/j.micres.2015.09.009
  • [39] Nasrollahzadeh M. and Sajadi SM. Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: catalytic activity for cyanation of aryl iodides under ligand-free conditions. J Colloid Interface Sci. 2016; 469: 191–195. https://doi.org/10.1016/j.jcis.2016.02.024
  • [40] Divyalakshmi MV, Thoppil JE. Comparitive study on instrumental characteristics and antibacterial efficacy of green synthesized silver nanoparticles from two pharmacologically important Garcinia species: Garcinia conicarpa and Garcinia cambogioides of Western Ghats. Nanotechnol Environ Eng. 2023; 8(3): 717–732. https://doi.org/10.1007/s41204-023-00320-1
  • [41] Al-Shmgani HAS, Mohammed WH, Sulaiman GM, Saadoon AH. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cell Nanomed Biotechnol. 2017; 45(6): 1234–1240. https://doi.org/10.1080/21691401.2016.1220950
  • [42] Naini D, Kumar G, Rawat G, Kapoor S, Kumar R. Process optimization for biogenesis of silver nanoparticles from Aspergillus flavus GGRK1 culture filtrate : Characterization and its antibacterial efficacy. Nanofabrication. 2024; 9: 1 16. https://doi.org/10.37819/nanofab.009.1798
  • [43] Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A: Mol Biomol Spectrosc. 2009; 73(2): 374–381. https://doi.org/10.1016/j.saa.2009.02.037
  • [44] Saied E, Abdel-Maksoud MA, Alfuraydi AA, Kiani BH, Bassyouni M, Al-Qabandi OA, Bougafa FHE, Badawy MSEM, Hashem AH. Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Front Microbiol. 2024; 15: 1–14. https://doi.org/10.3389/fmicb.2024.1345423
  • [45] Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal mediated biosynthesis of silver nanoparticles and evaluation of its antibacterial and wound-healing efficacy. Int J Mol Sci. 2024; 25(2): 861. https://doi.org/10.3390/ijms25020861
  • [46] Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd-Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules. 2018;23(3): 655. https://doi.org/10.3390/molecules23030655
  • [47] Priyadarshni KC, Krishnamoorthi R, Mumtha C, Mahalingam PU. Biochemical analysis of cultivated mushroom, Pleurotus florida and synthesis of silver nanoparticles for enhanced antimicrobial effects on clinically important human pathogens. Inorg Chem Commun. 2022; 142: 109673. https://doi.org/10.1016/j.inoche.2022.109673
  • [48] Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnol Biol Med. 2010; 6(5): 681–688. https://doi.org/10.1016/j.nano.2010.02.001
  • [49] Saber SM, Youssef MS, Arafa RF, Hassane AM. Mycotoxins production by Aspergillus ostianus Wehmer and using phytochemicals as control agent. J Sci Eng Res. 2016; 3(2): 198–213.
  • [50] Abdelrahem MMM. Abouelela ME, Abo-Dahab NF, Hassane AMA. Aspergillus-Penicillium co-culture: An investigation of bioagents for controlling Fusarium proliferatum-induced basal rot in onion. AIMS Microbiol. 2024; 10(4): 1024–1051. https://doi.org/10.3934/microbiol.2024044
  • [51] Han JW, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Kim J-H. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett. 2014; 9: 1–14. https://doi.org/10.1186/1556-276X-9-459
  • [52] Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008; 3: 129 133. https://doi.org/10.1007/s11671-008-9128-2
  • [53] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2025; 16(10): 2346. https://doi.org/10.1088/0957-4484/16/10/059
  • [54] Gharpure S, Yadwade R, Ankamwar B. Non-antimicrobial and non-anticancer properties of ZnO nanoparticles biosynthesized using different plant parts of Bixa orellana. ACS Omega. 2022; 7(2): 1914-1933. https://doi.org/10.1021/acsomega.1c05324
  • [55] Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, Nadeem M, Hano C, Lorenzo JM, Abbasi BH. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers. 2021; 13: 2818. https://doi.org/10.3390/ cancers13112818
  • [56] Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Converg. 2020; 7: 14. https://doi.org/10.1186/s40580-020-00224-9
  • [57] Moubasher AH, El-Naghy MA, Abdel-Hafez SII. Studies on the fungus flora of three grains in Egypt. Mycopathol Mycol Appl. 1972; 47: 261–274. https://doi.org/10.1007/BF02051664
  • [58] Mohamed H, El-Shanawany A, Shah AM, Nazir Y, Naz T, Ullah S, Mustafa K, Song Y. Comparative analysis of different isolated oleaginous Mucoromycota fungi for their γ-linolenic acid and carotenoid production. BioMed Res Int. 2020: 3621543. https://doi.org/10.1155/2020/3621543
  • [59] Devi L, Joshi S. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastr. 2015; 3(1): 29. https://doi.org/10.1016/j.jmau.2014.10.004
  • [60] Yassin MA, Elgorban AM, El-Samawaty AE-RMA, Almunqedhi BMA. Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity. Saudi J Biol Sci. 2021; 28(4): 2123–2127. https://doi.org/10.1016/j.sjbs.2021.01.063
  • [61] Khalaf NH, Hassane AMA, El-Deeb BA, Abo-Dahab NF. Antimicrobial efficacy mediated by mycogenic and characterized selenium nanoparticles. Sohag J Sci. 2024; 9(3): 255 260. https://doi.org/10.21608/sjsci.2024.254285.1161
  • [62] Al Mousa AA, Mohamed H, Hassane AMA, Abo-Dahab NF. Antimicrobial and cytotoxic potential of an endophytic fungus Alternaria tenuissima AUMC14342 isolated from Artemisia judaica L. growing in Saudi Arabia. J King Saud Univ-Sci. 2021; 33: 101462. https://doi.org/10.1016/j.jksus.2021.101462
  • [63] Mohamed H, Hassane A, Rawway M, El‑Sayed M, Gomaa A, Abdul‑Raouf U, Shah AM, Abdelmotaal H, Song Y. Antibacterial and cytotoxic potency of thermophilic Streptomyces werraensis MI‑S.24‑3 isolated from an Egyptian extreme environment. Arch Microbiol. 2021; 203: 4961–4972. https://doi.org/10.1007/s00203-021-02487-0
  • [64] Jahangirian H, Haron MDJ, Shah MH, Abdollahi Y, Rezayi M, Vafaei N. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Digest J Nanomater Biostuctr. 2013; 8(3): 1263–1270.
  • [65] Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evid-Based Complement Altern Med, 2019; 2019: 6212673. https://doi.org/10.1155/2019/6212673
  • [66] Moshi MJ, Van den Beukel C, Hamza OJ, Mbwambo ZH, Nondo RO, Masimba PJ, Matee M, Kapingu MC, Mikx F, Verweije P. Brine shrimp toxicity evaluation of some Tanzanian plants used traditionally for the treatment of fungal infections. Afr J Tradit Complement Altern Med. 2007; 4(2): 219-225. https://doi.org/10.4314/ajtcam.v4i2.31211
  • [67] Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Nat Cancer Inst. 1990; 82(13): 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  • [68] Alsehli BR, Hassan MHA, Mohamed DS, Saddik MS, Al-Hakkani MF. Enhanced cytotoxic efficacy against MCF-7 and HCT116 cell lines and high-performance cefoperazone removal using biogenically synthesized CeO2 nanoparticles. J Mol Struct. 2024; 1318: 139261. https://doi.org/10.1016/j.molstruc.2024.139261
There are 68 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Botany
Journal Section Articles
Authors

Nourhan Khalaf This is me

Nageh Abo-dahab This is me

Bahig El-deeb This is me

Abdallah Hassane This is me

Publication Date July 5, 2025
Submission Date December 5, 2024
Acceptance Date January 11, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Khalaf, N., Abo-dahab, N., El-deeb, B., Hassane, A. (2025). Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles. Journal of Research in Pharmacy, 29(4), 1760-1774. https://doi.org/10.12991/jrespharm.1734921
AMA Khalaf N, Abo-dahab N, El-deeb B, Hassane A. Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles. J. Res. Pharm. July 2025;29(4):1760-1774. doi:10.12991/jrespharm.1734921
Chicago Khalaf, Nourhan, Nageh Abo-dahab, Bahig El-deeb, and Abdallah Hassane. “Deciphering the Antimicrobial and Cytotoxic Impact of Aspergillus Terreus-Biogenic Silver Nanoparticles”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1760-74. https://doi.org/10.12991/jrespharm.1734921.
EndNote Khalaf N, Abo-dahab N, El-deeb B, Hassane A (July 1, 2025) Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles. Journal of Research in Pharmacy 29 4 1760–1774.
IEEE N. Khalaf, N. Abo-dahab, B. El-deeb, and A. Hassane, “Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles”, J. Res. Pharm., vol. 29, no. 4, pp. 1760–1774, 2025, doi: 10.12991/jrespharm.1734921.
ISNAD Khalaf, Nourhan et al. “Deciphering the Antimicrobial and Cytotoxic Impact of Aspergillus Terreus-Biogenic Silver Nanoparticles”. Journal of Research in Pharmacy 29/4 (July2025), 1760-1774. https://doi.org/10.12991/jrespharm.1734921.
JAMA Khalaf N, Abo-dahab N, El-deeb B, Hassane A. Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles. J. Res. Pharm. 2025;29:1760–1774.
MLA Khalaf, Nourhan et al. “Deciphering the Antimicrobial and Cytotoxic Impact of Aspergillus Terreus-Biogenic Silver Nanoparticles”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1760-74, doi:10.12991/jrespharm.1734921.
Vancouver Khalaf N, Abo-dahab N, El-deeb B, Hassane A. Deciphering the antimicrobial and cytotoxic impact of Aspergillus terreus-biogenic silver nanoparticles. J. Res. Pharm. 2025;29(4):1760-74.