Research Article
BibTex RIS Cite

Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches

Year 2024, Volume: 28 Issue: 1, 372 - 384, 28.06.2025

Abstract

The molecular mechanism of interaction between Mefenamic acid (MA) and human serum albumin (HSA) was investigated. UV-Visible absorption, fluorescence, and FT-IR spectroscopies, with molecular docking, have been used for assay of complex formation, quenching mechanism study, thermodynamic evaluations, and molecular details of the interaction mechanism. The quenching constant (Ksv) of 1.51×105 M-1 was obtained, while the results are indicating the dynamic quenching mechanism. The number of binding sites (n) and apparent binding constants (KA) were 1.51 and 6.55×107 M-1, respectively that resembles positive cooperativity and and strong binding of MA to HSA. The negative sign of standard enthalpy change (ΔH = -88.51 KJ/mol), standard entropy change (ΔS = -146.24 J/mol K), and Gibbs free energy (ΔG = -44.93 KJ/mol) indicated that the van der Waals interactions and hydrogen bonds are facilitating the MA-HSA complex formation. Addition of the metal ions, glucose, urea, and basic pHs decrease the MA-HSA binding constant. Molecular docking simulation showed that mainly positively charged amino acid residues contribute to the MA-HSA interaction.

References

  • [1] Zsila F. Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. J Phys Chem B. 2013; 117(37): 10798-10806. https://doi.org/10.1021/jp4067108
  • [2] Poureshghi F, Ghandforoushan P, Safarnejad A, Soltani S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J Photochem Photobiol B: Biology. 2017; 166: 187-192. https://doi.org/10.1016/j.jphotobiol.2016.09.046.
  • [3] Fanali G, Masi A, Trezza V, Marino M, Fasona M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med. 2012; 33(3): 209-290. https://doi.org/10.1016/j.mam.2011.12.002
  • [4] Patra S, Santhosh K, Pabbathi A, Samanta A. Diffusion of organic dyes in bovine serum albumin solution studied by fluorescence correlation spectroscopy. RSC Advances. 2012; 2(14): 6079-6086. https://doi.org/10.1039/C2RA20633A.
  • [5] Safarnejad A, Shaghaghi M, Dehghan G, Soltani S. Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. J Lumin. 2016; 176: 149-158. https://doi.org/10.1016/j.jlumin.2016.02.001
  • [6] Zhang J, Zhuang S, Tong C, Liu W. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling. J Agric Food Chem. 2013; 61(30): 7203-7211. https://doi.org/10.1021/jf401095n
  • [7] Zsila F. Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm. 2013; 10(5): 1668-1682. 10.1021/mp400027q
  • [8] Alam A, Uddin R, Haque S. Protein binding interaction of warfarin and acetaminophen in presence of arsenic and of the biological system. Bangladesh J Pharmacol. 2008; 3(2): 49-54. 10.3329/bjp.v3i2.835
  • [9] Xu H, Yao N, Xu H, Wang T, Li G, Li Z. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods. Int J Mol Sci. 2013; 14(7): 14185-14203. 10.3390/ijms140714185
  • [10] Bojko B, Sutkowska A, Maciqzek-Jurczyk M, Rownicka J, Sulkowski W. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: fluorescence and 1H NMR studies. J Mol Struct. 2009; 924: 332-337. https://doi.org/10.1016/j.molstruc.2008.12.015
  • [11] Bally M, Dendukuri N, Rich B, Nadeau L, Helin-Salmivaara A, Garbe E, Brophy J. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017; 357: j1909. https://doi.org/10.1136/bmj.j1909
  • [12] Bukkitgar S, Shetti N, Nayak D, Bagehalli G, Nadibewoor S. Electrochemical sensor for the detection of mefenamic acid in pharmaceutical sample and human urine at glassy carbon electrode. Der Pharma Chemica. 2014; 6(2): 258-268.
  • [13] Dhumal BS, Bhusari KP, Ghante MH, Jain NS. UV spectrophotometric analysis for the determination of mefenamic acid in pharmaceutical formulation. IAJPR. 2015. 5(11): 3643-3650. http://www.scopemed.org/?mno=211166.
  • [14] Lakowicz J. Principles of fluorescence spectroscopy (ed. Lakowicz, JR) 1–14. 2013, Springer Science & Business Media.
  • [15] Shahabadi N, Khorshidi A, Moghadam NH. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 114: 627-632. https://doi.org/10.1016/j.saa.2013.05.092.
  • [16] Tian, F, Li J, Jiang F, Han X, Xiang C, Ge Y, Li L, Liu Y. The adsorption of an anticancer hydrazone by protein: an unusual static quenching mechanism. RSC Advances. 2012; 2(2): 501-513. https://doi.org/10.1039/C1RA00521A.
  • [17] Ciepluch K, Katir N, Kadip AE, Weber M, Caminade AM, Bousmina M, Majoral JP, Bryszewska M. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. J Lumin. 2012; 132(6): 1553-1563. https://doi.org/10.1016/j.jlumin.2012.01.044
  • [18] Zhou N, Liang Y, Wang P. 18β-Glycyrrhetinic acid interaction with bovine serum albumin. J Photochem Photobiol A Chem 2007; 185(2-3): 271-276. https://doi.org/10.1016/j.jphotochem.2006.06.019
  • [19] Haghaei H, Hosseini SRA, Soltani S, Fathi F, Mokhtari F, Karima S, Rashidi M. Kinetic and thermodynamic study of beta-Boswellic acid interaction with Tau protein investigated by surface plasmon resonance and molecular modeling methods. Bioimpacts. 2020;10(1):17-25. https://doi.org/10.15171/bi.2020.03.
  • [20] Carter D, Ho J, Wang Z. Albumin binding sites for evaluating drug interactions and methods of evaluating or designing drugs based on their albumin binding properties. Google Patents, CA2585115A1.
  • [21] Taylor KM, Aulton ME. Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. Elsevier Health Sciences.2021.
  • [22] Ascenzi P, Fasano M. Allostery in a monomeric protein: The case of human serum albumin. Biophys Chem. 2010; 148(1-3): 16-22. https://doi.org/10.1016/j.bpc.2010.03.001
  • [23] Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D1082. https://doi.org/10.1093/nar/gkx1037.
  • [24] Dokmanić I, Šikić M, Tomić S. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr D Biol Crystallogr. 2008. 64(3): 257-263. https://doi.org/10.1107/S090744490706595X
  • [25] Safo MK, Ahmed MH, Ghatge MS, Boyiri T. Hemoglobin–ligand binding: Understanding Hb function and allostery on atomic level. Biochim Biophys Acta Proteins Proteom. 2011; 1814(6): 797-809. https://doi.org/10.1016/j.bbapap.2011.02.013
  • [26] Bolattin MB, Nandibewoor ST, Joshi SD, Dixit SR, Chimatadar SA. Interaction between carisoprodol and bovine serum albumin and effect of β-cyclodextrin on binding: Insights from molecular docking and spectroscopic techniques. RSC Advances. 2016; 6(68): 63463-63471. https://doi.org/10.1039/C6RA08063D
  • [27] Deng B, Wang Y, Zhu P, Xu X, Ning X. Study of the binding equilibrium between Zn (II) and HSA by capillary electrophoresis–inductively coupled plasma optical emission spectrometry. Anal Chim Acta. 2010; 683(1): 58-62. 10.1016/j.aca.2010.10.018
  • [28] Shen GF, Liu TT, Wang Q, Jiang M, Shi J. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J Photochem Photobiol Biology. 2015; 153: 380-390. https://doi.org/10.1016/j.jphotobiol.2015.10.023
  • [29] Śliwińska-Hill U, Wiglusz K. The interaction between human serum albumin and antidiabetic agent–exenatide: determination of the mechanism binding and effect on the protein conformation by fluorescence and circular dichroism techniques-Part I. J Biomol Struct Dyn. 2020; 38(8): 2267-2275. ttps://doi.org/10.1080/07391102.2019.1630007
  • [30] Byadagi K, Meti M, Nandibewoor S, Chimatadar S. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism. J Pharm Anal. 2017; 7(2): 103-109. https://doi.org/10.1016/j.jpha.2016.07.004
  • [31] Cheng Z. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol Biol Rep. 2012; 39: 9493-9508. https://doi.org/10.1007/s11033-012-1814-6
  • [32] Awasthi S, Nambiappan S. Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Advances. 2016; 6(93): 90739-90753. https://doi.org/10.1039/C6RA08283A
  • [33] Otagiri M, Chuang V. Pharmaceutically important pre-and posttranslational modifications on human serum albumin. Biol Pharm Bull. 2009; 32(4): 527-534. https://doi.org/10.1248/bpb.32.527.
  • [34] Chatterjee T, Pal A, Dey Scharita, Chatterjee BK, Chakrabarti P. Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PloS One. 2012; 7(5): e37468. https://doi.org/10.1371/journal.pone.0037468
  • [35] Rehman, MT, Shamsi H, Khan AU. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Mol Pharm. 2014; 11(6): 1785-1797. https://doi.org/10.1021/mp500116c
  • [36] Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J Pharm Biomed Anal. 2006; 41(2): 393-399. https://doi.org/10.1016/j.jpba.2005.11.037
  • [37] Karami K, Jamshidian N, Zakariazadeh M. Synthesis, characterization and molecular docking of new C, N‐palladacycles containing pyridinium‐derived ligands: DNA and BSA interaction studies and evaluation as anti‐tumor agents. Appl Organomet Chem. 2019; 33(3): e4728. https://doi.org/10.1002/aoc.4728
  • [38] Mudalip SKA, Bakar MRA, Adam F, Jamal P. Structures and hydrogen bonding recognition of mefenamic acid form I crystals in mefenamic acid/ethanol solution. Int J Chem Eng Appl. 2013; 4(3): 124-128. https://doi.org/10.7763/IJCEA.2013.V4.277
  • [39] Gomes DE, Caruso ÍP, de Araujo GC, de Lourenço IO, de Melo FA, Cornélio ML, Fossey MA, de Souza FP. Experimental evidence and molecular modeling of the interaction between hRSV-NS1 and quercetin. Int J Biol Macromol. 2016;85:40-47. https://doi.org/10.1016/j.ijbiomac.2015.12.051.
  • [40] Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-382. https://doi.org/10.1007/978-1-59745-177-2_19
  • [41] Soltani S, Babaei H, Asadpour-Zeynali K, Jouyban A. Modeling vasorelaxant activity of some drugs/drug candidates using artificial neural networks. J Pharmacol Toxicol. 2007; 2: 411-426. https://doi.org/10.3923/jpt.2007.411.426
  • [42] Tatardar S, Jouyban A, Soltani S. QSAR analysis of cyclooxygenase inhibitors selectivity index (COX1/COX2): Application of SVM-RBF and MLR methods. Pharm Sci. 2015; 21(2): 86-93. http://dx.doi.org/10.15171/PS.2015.22
  • [43] Zakariazadeh M, Barzegar A, Soltani S, Aryaour H. Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Med Chem Res, 2015; 24: 2485-2504. https://doi.org/10.1007/s00044-014-1305-5
  • [44] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. https://doi.org/10.1002/jcc.21256
  • [45] Karami K, Rahimi M, Zakariazadeh M, Buyukgungor O. A novel silver (I) complex of α-keto phosphorus ylide: Synthesis, characterization, crystal structure, biomolecular interaction studies, molecular docking and in vitro cytotoxic evaluation. J Mol Structure. 2019; 1177: 430-443. https://doi.org/10.1016/j.molstruc.2018.09.
There are 45 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Golnaz Parvizifard This is me 0000-0003-4111-3055

Mostafa Zakariazadeh This is me 0000-0003-3247-3876

Hossein Haghaei This is me 0000-0001-9453-0886

Mina Shaban This is me 0000-0003-3643-3687

Somaieh Soltani 0000-0002-0102-2960

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 1

Cite

APA Parvizifard, G., Zakariazadeh, M., Haghaei, H., … Shaban, M. (2025). Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches. Journal of Research in Pharmacy, 28(1), 372-384.
AMA Parvizifard G, Zakariazadeh M, Haghaei H, Shaban M, Soltani S. Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches. J. Res. Pharm. June 2025;28(1):372-384.
Chicago Parvizifard, Golnaz, Mostafa Zakariazadeh, Hossein Haghaei, Mina Shaban, and Somaieh Soltani. “Biophysical and Thermodynamical Insights into the Interaction of Mefenamic Acid With Human Serum Albumin, Based on Combined Multi-Spectroscopic and Molecular Modeling Approaches”. Journal of Research in Pharmacy 28, no. 1 (June 2025): 372-84.
EndNote Parvizifard G, Zakariazadeh M, Haghaei H, Shaban M, Soltani S (June 1, 2025) Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches. Journal of Research in Pharmacy 28 1 372–384.
IEEE G. Parvizifard, M. Zakariazadeh, H. Haghaei, M. Shaban, and S. Soltani, “Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches”, J. Res. Pharm., vol. 28, no. 1, pp. 372–384, 2025.
ISNAD Parvizifard, Golnaz et al. “Biophysical and Thermodynamical Insights into the Interaction of Mefenamic Acid With Human Serum Albumin, Based on Combined Multi-Spectroscopic and Molecular Modeling Approaches”. Journal of Research in Pharmacy 28/1 (June2025), 372-384.
JAMA Parvizifard G, Zakariazadeh M, Haghaei H, Shaban M, Soltani S. Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches. J. Res. Pharm. 2025;28:372–384.
MLA Parvizifard, Golnaz et al. “Biophysical and Thermodynamical Insights into the Interaction of Mefenamic Acid With Human Serum Albumin, Based on Combined Multi-Spectroscopic and Molecular Modeling Approaches”. Journal of Research in Pharmacy, vol. 28, no. 1, 2025, pp. 372-84.
Vancouver Parvizifard G, Zakariazadeh M, Haghaei H, Shaban M, Soltani S. Biophysical and thermodynamical insights into the interaction of mefenamic acid with human serum albumin, based on combined multi-spectroscopic and molecular modeling approaches. J. Res. Pharm. 2025;28(1):372-84.