Review Article
BibTex RIS Cite

Myokines in Response to Exercise: Endocrine Function and Systemic Effects of Muscles

Year 2025, Issue: Advanced Online Publication, 788 - 799
https://doi.org/10.56639/jsar.1758342

Abstract

Background: Skeletal muscle is increasingly recognized not only as a contractile organ responsible for movement but also as an active endocrine organ regulating systemic physiological processes. Myokines, biologically active proteins secreted during muscle contraction, are key mediators in metabolic homeostasis, immune regulation, neuroplasticity, and musculoskeletal health. This review aims to provide a comprehensive evaluation of the biochemical properties, target systems, and potential applications of major exercise-induced myokines. Methods: A multidisciplinary literature review was conducted, incorporating findings from exercise physiology, molecular biology, and clinical research. The analysis focused on Interleukin-6, Irisin, Brain-Derived Neurotrophic Factor, Myostatin, Insulin-Like Growth Factor-1, and Mechano Growth Factor, examining their secretion mechanisms, signaling pathways, and physiological effects. Results: Myokines were found to play significant roles in managing metabolic disorders, preventing age-related muscle loss, supporting rehabilitation processes, and monitoring athletic performance. Their effects extend beyond skeletal muscle, impacting cardiovascular, neural, and immune systems. Conclusions: Understanding the endocrine role of skeletal muscle, the diverse actions of myokines offer promising opportunities to integrate exercise science into clinical medicine. Personalized exercise prescriptions based on myokine profiles, supported by biotechnological innovations, may enhance preventive and therapeutic strategies, bridging the gap between basic science and applied health interven-tions.

References

  • Aguirre, F., Tacchi, F., Valero-Breton, M., Orozco-Aguilar, J., Conejeros-Lillo, S., Bonicioli, J., Iturriaga-Jofré, R., Cabrera, D., Soto, J. A., & Castro-Sepúlveda, M. (2025). CCL5 induces a sarcopenic-like phenotype via the CCR5 receptor. Antioxidants, 14(1), 84. https://doi.org/10.3390/antiox14010084
  • Al-Ibraheem, A. M. T., Hameed, A. T. A. Z., Marsool, M. D. M., Jain, H., Prajjwal, P., Khazmi, I., Nazzal, R. S., Al-Najati, H. M. H., Al-Zuhairi, B. H. Y. K., & Razzaq, M. (2024). Exercise-induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Science Reports, 7(9), e70034. https://doi.org/10.1002/hsr2.70034
  • Alvarez, A. M., DeOcesano-Pereira, C., Teixeira, C., & Moreira, V. (2020). IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells, 9(9), 2005. https://doi.org/10.3390/cells9092005
  • Arabanian, L. S., Kujawski, S., Habermann, I., Ehninger, G., & Kiani, A. (2012). Regulation of Fas/Fas ligand–mediated apoptosis by nuclear factor of activated T cells in megakaryocytes. British Journal of Haematology, 156(4), 523–534. https://doi.org/10.1111/j.1365-2141.2011.08970.x
  • Barlow, J. P., & Solomon, T. P. J. (2018). Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? American Journal of Physiology-Endocrinology and Metabolism, 314(4), E297–E307. https://doi.org/10.1152/ajpendo.00353.2017
  • Behrendt, T., Kirschnick, F., Kröger, L., Beileke, P., Rezepin, M., Brigadski, T., Leßmann, V., & Schega, L. (2021). Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC Neuroscience, 22(1), 71. https://doi.org/10.1186/s12868-021-00675-8
  • Bennett, A., Phillip, R., Scott, P., Minden, D., Jones, T., & Mistlin, A. (2006). Rheumatology, rehabilitation medicine and sports and exercise medicine. BMJ Military Health, 152(3), 163–174.
  • Breen, L., & Phillips, S. M. (2011). Skeletal muscle protein metabolism in the elderly: Interventions to counteract the anabolic resistance of ageing. Nutrition & Metabolism, 8(1), 68. https://doi.org/10.1186/1743-7075-8-68
  • Carson, B. P. (2017). The potential role of contraction-induced myokines in the regulation of metabolic function for the prevention and treatment of type 2 diabetes. Frontiers in Endocrinology, 8, 97. https://doi.org/10.3389/fendo.2017.00097
  • Catoire, M., Mensink, M., Kalkhoven, E., Schrauwen, P., & Kersten, S. (2014). Identification of human exercise-induced myokines using secretome analysis. Physiological Genomics, 46(7), 256–267. https://doi.org/10.1152/physiolgenomics.00174.2013
  • Cesari, M., Kritchevsky, S. B., Baumgartner, R. N., Atkinson, H. H., Penninx, B. W. J. H., Lenchik, L., Palla, S. L., Ambrosius, W. T., Tracy, R. P., & Pahor, M. (2005). Sarcopenia, obesity, and inflammation: Results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors Study. The American Journal of Clinical Nutrition, 82(2), 428–434. https://doi.org/10.1093/ajcn.82.2.428
  • Cordingley, D. M., Anderson, J. E., & Cornish, S. M. (2024). Resting systemic irisin concentrations are lower in older versus younger males after 12 weeks of resistance-exercise training while apelin and IL-15 concentrations were increased in the whole cohort. Muscles, 3(3), 202–211. https://doi.org/10.3390/muscles3030018
  • Deshmukh, A. S., Murgia, M., Nagaraj, N., Treebak, J. T., Cox, J., & Mann, M. (2015). Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Molecular & Cellular Proteomics, 14(4), 841–853.
  • Dos Santos, J. M., Taiar, R., Ribeiro, V. G. C., da Silva Lage, V. K., Scheidt Figueiredo, P. H., Costa, H. S., Pereira Lima, V., Sañudo, B., Bernardo-Filho, M., & Sá-Caputo, D. C. (2023). Whole-body vibration training on oxidative stress markers, irisin levels, and body composition in women with fibromyalgia: A randomized controlled trial. Bioengineering, 10(2), 260. https://doi.org/10.3390/bioengineering10020260
  • Febbraio, M. A., & Pedersen, B. K. (2005). Contraction-induced myokine production and release: Is skeletal muscle an endocrine organ? Exercise and Sport Sciences Reviews, 33(3), 114–119.
  • Fisher, F. M., Chui, P. C., Antonellis, P. J., Bina, H. A., Kharitonenkov, A., Flier, J. S., & Maratos-Flier, E. (2010). Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes, 59(11), 2781–2789. https://doi.org/10.2337/db10-0193
  • Garg, V., Ghay, R., Goyal, G., & Saini, R. V. (2025). Exploring the role of acute exercise-induced myokine release in glucose metabolism and insulin sensitivity in healthy and diabetic individuals. Cureus, 17(2).
  • Gheit, R. E. A. E., Younis, R. L., El-Saka, M. H., Emam, M. N., Soliman, N. A., El-Sayed, R. M., Hafez, Y. M., AbuoHashish, N. A., Radwan, D. A., & Khaled, H. E. (2022). Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. Journal of Physiology and Biochemistry, 78(4), 897–913. https://doi.org/10.1007/s13105-022-00915-3
  • Guo, Y., & Linstedt, A. D. (2006). COPII–Golgi protein interactions regulate COPII coat assembly and Golgi size. The Journal of Cell Biology, 174(1), 53–63.
  • He, Z., Tian, Y., Valenzuela, P. L., Huang, C., Zhao, J., Hong, P., He, Z., Yin, S., & Lucia, A. (2018). Myokine response to high-intensity interval vs. resistance exercise: An individual approach. Frontiers in Physiology, 9, 1735. https://doi.org/10.3389/fphys.2018.01735
  • Hittel, D. S., Axelson, M., Sarna, N., Shearer, J., Huffman, K. M., & Kraus, W. E. (2010). Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine & Science in Sports & Exercise, 42(11), 2023–2029. https://doi.org/10.1249/MSS.0b013e3181e0b9a8
  • Hojman, P., Brolin, C., Nørgaard-Christensen, N., Dethlefsen, C., Lauenborg, B., Olsen, C. K., Åbom, M. M., Krag, T., Gehl, J., & Pedersen, B. K. (2019). IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. American Journal of Physiology-Endocrinology and Metabolism, 316(5), E940–E947.
  • Ishiuchi, Y., Sato, H., Tsujimura, K., Kawaguchi, H., Matsuwaki, T., Yamanouchi, K., Nishihara, M., & Nedachi, T. (2018). Skeletal muscle cell contraction reduces a novel myokine, chemokine (CXC motif) ligand 10 (CXCL10): Potential roles in exercise-regulated angiogenesis. Bioscience, Biotechnology, and Biochemistry, 82(1), 97–105. https://doi.org/10.1080/09168451.2017.1411778
  • Kadyrov, M., Whiley, L., Brown, B., Erickson, K. I., & Holmes, E. (2022). Associations of the lipidome with ageing, cognitive decline and exercise behaviours. Metabolites, 12(9), 822. https://doi.org/10.3390/metabo12090822
  • Kandalla, P. K., Goldspink, G., Butler-Browne, G., & Mouly, V. (2011). Mechano growth factor E peptide (MGF-E), derived from an isoform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mechanisms of Ageing and Development, 132(4), 154–162. https://doi.org/10.1016/j.mad.2011.02.007
  • Kang, S., Park, I. B., & Lim, S.-T. (2020). Changing levels of Myokines after aerobic training and resistance training in post-menopausal obese females: a Randomized Controlled Trial. Sustainability, 12(20), 8413. https://doi.org/10.3390/su12208413
  • Kersten, S. (2014). Articles in Press. Physiological Genomics. https://doi.org/10.1152/physiolgenomics.00174.2013
  • Kim, H.-J., So, B., Choi, M., Kang, D., & Song, W. (2015). Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Experimental Gerontology, 70, 11–17. https://doi.org/10.1016/j.exger.2015.07.006
  • Kim, J.-H., Yu, S.-M., & Son, J. W. (2022). Human tissue-engineered skeletal muscle: A tool for metabolic research. Endocrinology and Metabolism, 37(3), 408–414. https://doi.org/10.3803/EnM.2022.302
  • Kim, Y.-M., Ji, E.-S., Ko, I.-G., Jin, J.-J., Cho, Y.-H., & Seo, T.-B. (2019). Combination of treadmill exercise with bone marrow stromal cells transplantation activates protein synthesis-related molecules in soleus muscle of spinal cord injured rats. Journal of Exercise Rehabilitation, 15(3), 377–385. https://doi.org/10.12965/jer.1938284.142
  • Lee, B., Kim, S. K., Shin, Y. J., Son, Y. H., Yang, J. W., Lee, S.-M., Yang, Y. R., Lee, K.-P., & Kwon, K.-S. (2022). Genome-wide analysis of a cellular exercise model based on electrical pulse stimulation. Scientific Reports, 12(1), 21251. https://doi.org/10.1038/s41598-022-25758-2
  • Leone, T. C., Lehman, J. J., Finck, B. N., Schaeffer, P. J., Wende, A. R., Boudina, S., Courtois, M., Wozniak, D. F., Sambandam, N., & Bernal-Mizrachi, C. (2005). PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biology, 3(4), e101. https://doi.org/10.1371/journal.pbio.0030101
  • Letukienė, A., Hendrixson, V., & Ginevičienė, V. (2024). Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Frontiers in Medicine, 11, 1421962. https://doi.org/10.3389/fmed.2024.1421962
  • Leustean, L., Preda, C., Teodoriu, L., Mihalache, L., Arhire, L., & Ungureanu, M.-C. (2021). Role of irisin in endocrine and metabolic disorders—Possible new therapeutic agent? Applied Sciences, 11(12), 5579. https://doi.org/10.3390/app11125579
  • Liu, Y., Zhu, C., Guo, J., Chen, Y., & Meng, C. (2020). The neuroprotective effect of irisin in ischemic stroke. Frontiers in Aging Neuroscience, 12, 588958. https://doi.org/10.3389/fnagi.2020.588958
  • Lu, X., Chen, Y., Xie, Q., & Tong, N. (2025). Comparative effect of high-intensity interval training and moderate-intensity continuous training on metabolic improvements and regulation of Cidea and Cidec in obese C57BL/6 mice. PLoS ONE, 20(4), e0322634. https://doi.org/10.1371/journal.pone.0322634
  • Marawan, D. A. M., Makboul, K. M., Mahmoud, H. M. A., Younis, S. A. S., & Mansour, H. K. (2023). Study of the relationship between insulin-like growth factor 1, myostatin and muscle status in a sample of Egyptian patients on hemodialysis. The Egyptian Journal of Hospital Medicine, 90(1), 194–199. https://doi.org/10.21608/ejhm.2023.279310
  • Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). European Journal of Sport Science, 13(1), 1–24. https://doi.org/10.1249/mss.0b013e318279a10a
  • Mitchell, P. L., Nachbar, R., Lachance, D., St-Pierre, P., Trottier, J., Barbier, O., & Marette, A. (2017). Treatment with a novel agent combining docosahexaenoate and metformin increases protectin DX and IL-6 production in skeletal muscle and reduces insulin resistance in obese diabetic db/db mice. Diabetes, Obesity and Metabolism, 19(3), 313–319. https://doi.org/10.1111/dom.12818
  • Mosallanejad, K., Sekine, Y., Ishikura-Kinoshita, S., Kumagai, K., Nagano, T., Matsuzawa, A., Takeda, K., Naguro, I., & Ichijo, H. (2014). The DEAH-box RNA helicase DHX15 activates NF-κB and MAPK signaling downstream of MAVS during antiviral responses. Science Signaling, 7(323), ra40. https://doi.org/10.1126/scisignal.2004841
  • Mucher, P., Batmyagmar, D., Perkmann, T., Repl, M., Radakovics, A., Ponocny-Seliger, E., Lukas, I., Fritzer-Szekeres, M., Lehrner, J., & Knogler, T. (2021). Basal myokine levels are associated with quality of life and depressed mood in older adults. Psychophysiology, 58(5), e13799. https://doi.org/10.1111/psyp.13799
  • Murata, K., Ishiuchi-Sato, Y., & Nedachi, T. (2023). Identification of CC motif chemokine ligand 5 as a heat-dependent myokine. Endocrine Journal, 70(6), 601–610. https://doi.org/10.1507/endocrj.EJ22-0611
  • National Institutes of Health. (2020). National Institutes of Health. https://www.nih.gov
  • Önder, A., Çınar, A. S., & Canatan, M. (2019). Cordyceps sinensis (Berk.) Sacc. ve farmakolojik açıdan önemi. Journal of Literature Pharmacy Sciences, 8(2), 85–96. https://doi.org/10.5336/pharmsci.2019-65114
  • Papp, C., Pak, K., Erdei, T., Juhasz, B., Seres, I., Szentpeteri, A., Kardos, L., Szilasi, M., Gesztelyi, R., & Zsuga, J. (2017). Alteration of the irisin–brain-derived neurotrophic factor axis contributes to disturbance of mood in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, 2023–2033. https://doi.org/10.2147/COPD.S135701
  • Pedersen, B. K. (2011). Muscles and their myokines. Journal of Experimental Biology, 214(2), 337–346. https://doi.org/10.1242/jeb.048074
  • Pérez-López, A., Gonzalo-Encabo, P., Pérez-Köhler, B., García-Honduvilla, N., & Valadés, D. (2022). Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. European Journal of Sport Science, 22(9), 1426–1435. https://doi.org/10.1080/17461391.2021.1939430
  • Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14–23. https://doi.org/10.1016/j.jshs.2014.11.001
  • Rebelo-Marques, A., De Sousa Lages, A., Andrade, R., Ribeiro, C. F., Mota-Pinto, A., Carrilho, F., & Espregueira-Mendes, J. (2018). Aging hallmarks: The benefits of physical exercise. Frontiers in Endocrinology, 9, 258. https://doi.org/10.3389/fendo.2018.00258
  • Ringleb, M., Javelle, F., Haunhorst, S., Bloch, W., Fennen, L., Baumgart, S., Drube, S., Reuken, P. A., Pletz, M. W., & Wagner, H. (2024). Beyond muscles: Investigating immunoregulatory myokines in acute resistance exercise—A systematic review and meta-analysis. The FASEB Journal, 38(7), e23596. https://doi.org/10.1096/fj.202301619R
  • Roggio, F., Petrigna, L., Trovato, B., Di Rosa, M., & Musumeci, G. (2023). The role of lubricin, irisin and exercise in the prevention and treatment of osteoarthritis. International Journal of Molecular Sciences, 24(6), 5126. https://doi.org/10.3390/ijms24065126
  • Schertzer, J., & Lynch, G. (2006). Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Therapy, 13(23), 1657–1664. https://doi.org/10.1038/sj.gt.3302817
  • Schwappacher, R., Dieterich, W., Reljic, D., Pilarsky, C., Mukhopadhyay, D., Chang, D. K., Biankin, A. V., Siebler, J., Herrmann, H. J., & Neurath, M. F. (2021). Muscle-derived cytokines reduce growth, viability and migratory activity of pancreatic cancer cells. Cancers, 13(15), 3820. https://doi.org/10.3390/cancers13153820
  • Scisciola, L., Fontanella, R. A., Surina, N., Cataldo, V., Paolisso, G., & Barbieri, M. (2021). Sarcopenia and cognitive function: Role of myokines in muscle–brain cross-talk. Life, 11(2), 173. https://doi.org/10.3390/life11020173
  • Setiawan, H. K., Rejeki, P. S., Pranoto, A., Wigati, K. W., Muhammad, M., & Rahmanto, I. (2024). Treadmill has a more beneficial effect than cycling on fat loss through myokines secretion in obese women. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación, (55), 203–211.
  • Sharmine, S., & Ghila, L. (2025). Targeting inflammation in type 2 diabetes: The emerging role of decorin. Wiley Interdisciplinary Reviews, 241, e70049. https://doi.org/10.1111/apha.70049
  • Sheptulina, A. F., Mamutova, E. M., Elkina, A. Y., Timofeev, Y. S., Metelskaya, V. A., Kiselev, A. R., & Drapkina, O. M. (2024). Serum irisin, myostatin, and myonectin correlate with metabolic health markers, liver disease progression, and blood pressure in patients with metabolic dysfunction-associated fatty liver disease and hypertension. Metabolites, 14(11), 584. https://doi.org/10.3390/metabo14110584
  • Steensberg, A., Van Hall, G., Osada, T., Sacchetti, M., Saltin, B., & Pedersen, B. K. (2000). Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. The Journal of Physiology, 529(1), 237–242.
  • Subbotina, E., Sierra, A., Zhu, Z., Gao, Z., Koganti, S. R. K., Reyes, S., Stepniak, E., Walsh, S. A., Acevedo, M. R., & Perez-Terzic, C. M. (2015). Musclin is an activity-stimulated myokine that enhances physical endurance. Proceedings of the National Academy of Sciences, 112(52), 16042–16047. https://doi.org/10.1073/pnas.1514250112
  • Suda, M., Paul, K. H., Tripathi, U., Minamino, T., Tchkonia, T., & Kirkland, J. L. (2024). Targeting cell senescence and senolytics: Novel interventions for age-related endocrine dysfunction. Endocrine Reviews, 45(5), 655–675. https://doi.org/10.1210/endrev/bnae010
  • Sun, Z., Wu, Z., Zhu, L., Li, X., Xu, D., Tian, X., & Mao, D. (2024). Research trends and hotspot evolution of exercise-regulated myokines: A bibliometric analysis from 2003 to 2023. Frontiers in Physiology, 15, 1410068. https://doi.org/10.3389/fphys.2024.1410068
  • Taheri, F., Fathi, M., & Hejazi, K. (2021). The effect of 10 weeks core muscle training on levels of follistatin, myostatin, and pain in elderly women. Internal Medicine Today, 27(2), 164–181. https://doi.org/10.32598/hms.27.2.1970.12
  • Takasawa, S., Shobatake, R., Itaya-Hironaka, A., Makino, M., Uchiyama, T., Sakuramoto-Tsuchida, S., Takeda, Y., Ota, H., & Yamauchi, A. (2022). Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. Journal of Cellular and Molecular Medicine, 26(24), 6019–6031. https://doi.org/10.1111/jcmm.17618
  • Timper, K., Denson, J. L., Steculorum, S. M., Heilinger, C., Engstroem-Ruud, L., Wunderlich, C. M., Rose-John, S., Wunderlich, F. T., & Brüning, J. C. (2017). IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Reports, 19(2), 267–280.
  • Tomas, E., Kelly, M., Xiang, X., Tsao, T.-S., Keller, C., Keller, P., Luo, Z., Lodish, H., Saha, A. K., & Unger, R. (2004). Metabolic and hormonal interactions between muscle and adipose tissue. Proceedings of the Nutrition Society, 63(2), 381–385. https://doi.org/10.1079/PNS2004356
  • Urhausen, A., Gabriel, H., & Kindermann, W. (1995). Blood hormones as markers of training stress and overtraining. Sports Medicine, 20(4), 251–276. https://doi.org/10.2165/00007256-199520040-00004
  • Wang, B., Liang, J., Lu, C., Lu, A., & Wang, C. (2024). Exercise regulates myokines in aging-related diseases through muscle–brain crosstalk. Gerontology, 70(2), 193–209. https://doi.org/10.1159/000535339
  • Wang, K., Li, H., Wang, H., Wang, J.-H., Song, F., & Sun, Y. (2018). Irisin exerts neuroprotective effects on cultured neurons by regulating astrocytes. Mediators of Inflammation, 2018(1), 9070341. https://doi.org/10.1155/2018/9070341
  • Wu, B. W., Berger, M., Sum, J. C., Hatch, G. F., III, & Schroeder, E. T. (2014). Randomized control trial to evaluate the effects of acute testosterone administration in men on muscle mass, strength, and physical function following ACL reconstructive surgery: Rationale, design, methods. BMC Surgery, 14(1), 102. https://doi.org/10.1186/1471-2482-14-102
  • Xiao, W., Chen, P., & Dong, J. (2012). Effects of overtraining on skeletal muscle growth and gene expression. International Journal of Sports Medicine, 33(10), 846–853. https://doi.org/10.1055/s-0032-1311585
  • Yang, L., Li, P., Huang, X., Wang, C., Zeng, Y., Wang, J., Yao, X., & Meng, J. (2025). Effects of combined transcriptome and metabolome analysis training on athletic performance of 2-year-old trot-type Yili horses. Genes, 16(2), 197. https://doi.org/10.3390/genes16020197
  • Yazici, A. B., Guzel, D., Kurt, E. M., Turkmen, B., & Yazici, E. (2022). Klotho, BDNF, NGF, and GDNF levels and related factors in the withdrawal period in chronic cannabinoid users. Indian Journal of Clinical Biochemistry, 37(2), 139–148. https://doi.org/10.1007/s12291-021-00959-0
  • You, T., & Ogawa, E. F. (2020). Effects of meditation and mind-body exercise on brain-derived neurotrophic factor: A literature review of human experimental studies. Sports Medicine and Health Science, 2(1), 7–9. https://doi.org/10.1016/j.smhs.2020.03.001
  • Yu, Q., Li, G., Li, J., Sun, L., Yang, Y., & Tao, L. (2022). Irisin protects cerebral neurons from hypoxia/reoxygenation via suppression of apoptosis and expression of pro-inflammatory cytokines. Neuroimmunomodulation, 29(4), 425–432. https://doi.org/10.1159/000524273
  • Zhang, L., Lv, J., Wang, C., Ren, Y., & Yong, M. (2023). Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Molecular Biology Reports, 50(3), 2723–2734. https://doi.org/10.1007/s11033-022-07821-3
  • Zhang, Y., Zhou, B., Wen, M., Hu, M., Peng, J.-G., Wang, Y., Fan, L.-L., & Tang, L. (2020). ZG02 improved hepatic glucose metabolism and insulin sensitivity via activation of AMPK/Sirt1 signaling pathways in a high-fat diet/streptozotocin-induced type 2 diabetes model. Diabetes, Metabolic Syndrome and Obesity, 4333–4339. https://doi.org/10.2147/DMSO.S275145
  • Zhu, H., Liu, D., Sui, M., Zhou, M., Wang, B., Qi, Q., Wang, T., Zhang, G., Wan, F., & Zhang, B. (2023). CRISPRa-based activation of Fgf21 and Fndc5 ameliorates obesity by promoting adipocyte browning. Clinical and Translational Medicine, 13(7), e1326. https://doi.org/10.1002/ctm2.1326
There are 77 citations in total.

Details

Primary Language English
Subjects Exercise Physiology, Physical Activity and Health, Sports Science and Exercise (Other)
Journal Section Review Article
Authors

Halil Çolak 0000-0001-9003-106X

Submission Date August 4, 2025
Acceptance Date December 14, 2025
Early Pub Date December 15, 2025
Published in Issue Year 2025 Issue: Advanced Online Publication

Cite

APA Çolak, H. (2025). Myokines in Response to Exercise: Endocrine Function and Systemic Effects of Muscles. Journal of Sport for All and Recreation(Advanced Online Publication), 788-799. https://doi.org/10.56639/jsar.1758342

Creative Commons Lisansı

Articles published by Journal Sports for All and Recreation is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.