Research Article
BibTex RIS Cite

Comprehensive Analysis of Green Hydrogen Production: Technologies, Costs, Environmental Impacts, and Policy Frameworks

Year 2025, Volume: 3 Issue: 1, 1 - 12, 30.06.2025
https://doi.org/10.63063/jsat.1611951

Abstract

Abstract: Green hydrogen, produced via electrolysis using renewable energy, is a critical pathway to decarbonizing energy systems. This study compares key electrolysis technologies, including Alkaline (AE), Proton Exchange Membrane (PEM), Solid Oxide (SOE), and Anion Exchange Membrane (AEM) systems. SOE demonstrates the highest efficiency ranging from 80% to 90% which operates at elevated temperatures ranging from 700°C to 900°C, and has higher capital costs per Kilowatt which ranged from $2,000 to $3,000 per kW. PEM offers rapid response times ranging from 10 s to 30s and high hydrogen purity of 99.99% but suffers from shorter lifespans ranging from 40,000 to 60,000 hours. Material advancements, such as Nafion™ membranes and Iridium Oxide catalysts, enhance efficiency by up to 10%. Hydrogen storage methods reveal compressed hydrogen as suitable for short-term applications, while ammonia carriers and LOHC excel in long-term storage due to their safety and cost efficiency. Distribution technologies vary, with pipelines having cost-effective of $0.05/kg H₂/km over long distances, while trucks offer flexibility for shorter ranges. Environmental analysis highlights the carbon intensity disparity, with green hydrogen emitting 0 to 0.5 kg CO₂/kg H₂ compared to grey hydrogen’s which emits 10 to 12 kg CO₂/kg H₂. Lifecycle water consumption ranges from 7 to 12 L/kg H₂, with SOE being the most water-efficient. Global hydrogen projects, such as Saudi Arabia's NEOM with 650,000 tons per year and Europe’s HyDeal Ambition with 1,500,000 tons per year, illustrate the large-scale adoption of hydrogen technologies. Policy frameworks, including the EU Hydrogen Strategy and the USA Clean Hydrogen Plan, emphasize subsidies and infrastructure investments. This comprehensive analysis underscores the potential of green hydrogen, provided technological, environmental, and policy challenges are addressed effectively.

References

  • A. Ahmad, S. Khan, T. Chhabra, S. Tariq, M. S. Javed, H. Li, S. R. Naqvi, S. Rajendran, R. Luque, and I. Ahmad, “Synergic impact of renewable resources and advanced technologies for green hydrogen production: Trends and perspectives,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 5364–5382, 2024. https://doi.org/10.1016/j.ijhydene.2023.06.337
  • A. Awais, S. Khan, T. Chhabra, S. Tariq, M. S. Javed, H. Li, S. R. Naqvi, S. Rajendran, R. Luque, and I. Ahmad, “Synergic impact of renewable resources and advanced technologies for green hydrogen production: Trends and perspectives,” Int. J. Hydrogen Energy, vol. 49, no. 6, pp. 2351–2365, 2024. https://doi.org/10.1016/j.ijhydene.2023.06.337
  • T. Ayiguzhali, Q. Chang, L. Xie, Z. Z. Xu, T. Z., and Z. Song, “Current Status of Green Hydrogen Production Technology: A Review,” Sustainability, vol. 16, no. 20, pp. 9070–9083, 2024. https://doi.org/10.3390/su16209070
  • S. Baral and J. Šebo, “Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems,” Heliyon, vol. 10, no. 3, p. e25742, 2024. https://doi.org/10.1016/j.heliyon.2024.e25742
  • P. Benalcazar and A. Komorowska, “Techno-economics of Green Hydrogen: Present Trends and Future Prospects,” Energy, Environment, and Sustainability, vol. 18, no. 4, pp. 387–402, 2024. https://doi.org/10.1007/978-981-97-1339-4_23
  • S. Z. Bidattul, J. K. Pin, G. E. H. Mohamed, H. C. Ong, S. M. R. Fattah, A. Rahman, D. L. Nghiem, and T. M. I. Mahlia, “Recent advancement and assessment of green hydrogen production technologies,” Renew. Sustain. Energy Rev., vol. 18, no. 1, pp. 101–120, 2024. https://doi.org/10.1016/j.rser.2023.113941
  • A.-M. Chiroșcă, E. Rusu, and V. Mînzu, “Green Hydrogen—Production and Storage Methods: Current Status and Future Directions,” Energies, vol. 17, no. 23, p. 5820, 2024. https://doi.org/10.3390/en17235820
  • European Commission, A Hydrogen Strategy for a Climate-Neutral Europe, 2020. [Online]. Available: https://energy.ec.europa.eu/system/files/2020-07/hydrogen_strategy_0.pdf
  • I. C. Farhan, B. F. Sadat, M. Islam, W. S. Tanim, and R. M. Meraz, “Unlocking the potential of green hydrogen for a sustainable energy future: A review of production methods and challenges,” Future Energy, vol. 3, no. 4, pp. 78–99, 2024. https://doi.org/10.55670/fpll.fuen.3.4.2
  • N. Gupta and P. Bajaj, “A Comprehensive Analysis of Production, Utilization, And Future Prospects for Green Hydrogen for A Sustainable Future,” Mater. Appl. J., vol. 58, no. 10, pp. 50–53, 2023. https://doi.org/10.33516/maj.v58i10.50-53p
  • H. Shen, P. C. del Granado, R. S. Jorge, and K. Löffler, “Environmental and Climate Impacts of a Large-Scale Deployment of Green Hydrogen in Europe,” Energy Climate Change, vol. 16, no. 3, pp. 135–156, 2024. https://doi.org/10.1016/j.egycc.2024.100133
  • Q. Hassan, S. S. Algburi, A. Z. Sameen, H. M. Salman, and A. K. Al-Jiboory, “A review of green hydrogen production by renewable resources,” Energy Harvesting Syst., vol. 10, no. 2, pp. 89–103, 2023. https://doi.org/10.1515/ehs-2022-0127
  • Hydrogen Council, Hydrogen Insights 2023: A Strategic Perspective on the Role of Hydrogen in the Global Energy Transition, vol. 1, pp. 1–120, 2023.
  • International Energy Agency (IEA), World Energy Outlook 2022, Paris, 2022. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2022
  • IRENA, Renewable Energy Statistics 2023, Abu Dhabi, 2023. [Online]. Available: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023
  • A. Islam, T. Islam, H. Mahmud, O. Raihan, S. M. Islam, H. M. Marwani, M. M. Rahman, A. M. Asiri, M. M. Hasan, M. N. Hasan, M. S. Salman, K. T. Kubra, M. A. Shenashen, M. C. Sheikh, and M. R. Awual, “Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions,” Int. J. Hydrogen Energy, vol. 49, no. 15, pp. 6753–6771, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.142
  • M. Jaradat, S. Almashaileh, C. Bendea, A. Juaidi, G. Bendea, and T. Bungau, “Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments,” Energies, vol. 17, no. 16, p. 3992, 2024. https://doi.org/10.3390/en17163992
  • J. Zhang and J. Li, “Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future,” Energies, vol. 17, no. 16, pp. 64148–64157, 2024. https://doi.org/10.3390/en17164148
  • K. Bhardwaj, “Technological Advancements in Adopting Green Hydrogen in the Power and Energy Sector,” IEEE Region 10 Symposium (TENSYMP), vol. 102, no. 3, pp. 210–225, 2024. https://doi.org/10.1109/tensymp61132.2024.10752303
  • F. Kourougianni, A. Arsalis, A. V. Olympios, G. Yiasoumas, C. Konstantinou, P. Papanastasiou, and G. E. Georghiou, “A comprehensive review of green hydrogen energy systems,” Renew. Energy, vol. 215, p. 120911, 2024. https://doi.org/10.1016/j.renene.2024.120911
  • M. S. Kumar, J. Gupta, S. Berjozkina, and M. Safaraliev, “The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods – A review,” Int. J. Hydrogen Energy, vol. 49, no. 9, pp. 4621–4637, 2024. https://doi.org/10.1016/j.ijhydene.2024.02.255
  • Y. Li, R. Lin, R. O'Shea, V. Thaore, D. M. Wall, and J. D. Murphy, “A perspective on three sustainable hydrogen production technologies with a focus on technology readiness level, cost of production, and life cycle environmental impacts,” Heliyon, vol. 10, no. 4, p. e26637, 2024. https://doi.org/10.1016/j.heliyon.2024.e26637
  • B. Losiewicz, “Technology for Green Hydrogen Production: Desk Analysis,” Energies, vol. 17, no. 17, p. 4514, 2024. https://doi.org/10.3390/en17174514
  • M. Kumar, J. Singla, S. Gupta, S. Berjozkina, and M. Safaraliev, “The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods – A review,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 120–132, 2024. https://doi.org/10.1016/j.ijhydene.2024.02.255
  • M. Sayer, A. Ajanovic, and R. Haas, “Economic and environmental assessment of different hydrogen production and transportation modes,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 5003–5015, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.073
  • S. R. Naqvi, B. Kazmi, S. A. A. Taqvi, W. H. Chen, and D. Juchelková, “Techno-economic analysis for advanced methods of green hydrogen production,” Curr. Opin. Green Sustain. Chem., vol. 50, p. 100939, 2024. https://doi.org/10.1016/j.cogsc.2024.100939
  • M. Oyo, “Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments,” Energies, vol. 17, no. 16, p. 3992, 2024. https://doi.org/10.3390/en17163992
  • P. Benalcazar and A. Komorowska, “Techno-economics of Green Hydrogen: Present Trends and Future Prospects,” Energy, Environment, and Sustainability, 2024. https://doi.org/10.1007/978-981-97-1339-4
  • R. Pandya and H. Dharsandiya, “Clean Energy Catalyst: The Rise of Green Hydrogen,” Int. J. Multidiscip. Res., vol. 6, no. 3, p. 22114, 2024. https://doi.org/10.36948/ijfmr.2024.v06i03.22114
  • Q. Hassan, S. Saadoon Algburi, A. Z. Sameen, H. M. Salman, and A. K. Al-Jiboory, “A review of green hydrogen production by renewable resources,” Energy Harvesting Syst., vol. 15, no. 4, pp. 118–132, 2023. https://doi.org/10.1515/ehs-2022-0127
  • S. Raza, B. Kazmi, S. A. A. Taqvi, W. H. Chen, and D. Juchelková, “Techno-economic analysis for advanced methods of green hydrogen production,” Curr. Opin. Green Sustain. Chem., vol. 50, p. 100939, 2024. https://doi.org/10.1016/j.cogsc.2024.100939
  • M. A. Salam, K. Ahmed, M. Marufuzzaman, and A. S. M. Sayem, “Techno-economic prospects of green hydrogen production,” Elsevier Sustainable Energy J., vol. 10, no. 2, pp. 112–130, 2024. https://doi.org/10.1016/b978-0-443-15329-7.00006-5
  • M. Sayer, A. Ajanovic, and R. Haas, “Economic and environmental assessment of different hydrogen production and transportation modes,” Int. J. Hydrogen Energy, vol. 49, no. 14, pp. 7012–7029, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.073
  • M. Sharma, V. V. Tyagi, R. Kouser, K. Kumari, K. Chopra, and R. Kothari, “Green Hydrogen and Climatic Change: Current Status and Future Outlook,” ACS Symp. Ser., vol. 1474, no. 2, pp. 15–32, 2024. https://doi.org/10.1021/bk-2024-1474.ch002
  • H. Shen, P. Crespo del Granado, R. S. Jorge, and K. Löffler, “Environmental and Climate Impacts of a Large-Scale Deployment of Green Hydrogen in Europe,” Energy Climate Change, vol. 5, no. 1, p. 100133, 2024. https://doi.org/10.1016/j.egycc.2024.100133
  • U.S. Department of Energy, U.S. National Clean Hydrogen Strategy and Roadmap, 2020. [Online]. Available: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/us-national-clean-hydrogen-strategy-roadmap.pdf
  • L. Wang, W. Liu, H. Sun, Y. Li, and L. Huang, “Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources,” Energies, vol. 17, no. 14, p. 3548, 2024. https://doi.org/10.3390/en17143548
  • Y. Li, F. Angizeh, M. A. Jafari, J. Chen, and A. Klebnikov, “Green Hydrogen Value Chains: Integrated Framework for Developing and Assessing Viable Scenarios with a Case Study,” in 19th Int. Symp. Grid Tech. (ISGT), 2024, p. 4140. https://doi.org/10.1109/isgt59692.2024.10454147
  • J. Zhang and J. Li, “Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future,” Energies, vol. 17, no. 16, p. 4148, 2024. https://doi.org/10.3390/en17164148
  • D. D. Olodu and A. Erameh, “Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa”, BSJ Eng. Sci., vol. 6, no. 3, pp. 296–307, 2023, doi: 10.34248/bsengineering.1195247.
  • D. D. Olodu, O. I. Ihenyen, and F. Inegbedion, “Advances in Renewable Energy Systems: Integrating Solar, Wind, and Hydropower for a Carbon-Neutral Future”, IJONFEST, vol. 3, no. 1, pp. 14–24, 2025, doi: 10.61150/ijonfest.2025030102.

Comprehensive Analysis of Green Hydrogen Production: Technologies, Costs, Environmental Impacts, and Policy Frameworks

Year 2025, Volume: 3 Issue: 1, 1 - 12, 30.06.2025
https://doi.org/10.63063/jsat.1611951

Abstract

Abstract: Green hydrogen, produced via electrolysis using renewable energy, is a critical pathway to decarbonizing energy systems. This study compares key electrolysis technologies, including Alkaline (AE), Proton Exchange Membrane (PEM), Solid Oxide (SOE), and Anion Exchange Membrane (AEM) systems. SOE demonstrates the highest efficiency ranging from 80% to 90% which operates at elevated temperatures ranging from 700°C to 900°C, and has higher capital costs per Kilowatt which ranged from $2,000 to $3,000 per kW. PEM offers rapid response times ranging from 10 s to 30s and high hydrogen purity of 99.99% but suffers from shorter lifespans ranging from 40,000 to 60,000 hours. Material advancements, such as Nafion™ membranes and Iridium Oxide catalysts, enhance efficiency by up to 10%. Hydrogen storage methods reveal compressed hydrogen as suitable for short-term applications, while ammonia carriers and LOHC excel in long-term storage due to their safety and cost efficiency. Distribution technologies vary, with pipelines having cost-effective of $0.05/kg H₂/km over long distances, while trucks offer flexibility for shorter ranges. Environmental analysis highlights the carbon intensity disparity, with green hydrogen emitting 0 to 0.5 kg CO₂/kg H₂ compared to grey hydrogen’s which emits 10 to 12 kg CO₂/kg H₂. Lifecycle water consumption ranges from 7 to 12 L/kg H₂, with SOE being the most water-efficient. Global hydrogen projects, such as Saudi Arabia's NEOM with 650,000 tons per year and Europe’s HyDeal Ambition with 1,500,000 tons per year, illustrate the large-scale adoption of hydrogen technologies. Policy frameworks, including the EU Hydrogen Strategy and the USA Clean Hydrogen Plan, emphasize subsidies and infrastructure investments. This comprehensive analysis underscores the potential of green hydrogen, provided technological, environmental, and policy challenges are addressed effectively.

References

  • A. Ahmad, S. Khan, T. Chhabra, S. Tariq, M. S. Javed, H. Li, S. R. Naqvi, S. Rajendran, R. Luque, and I. Ahmad, “Synergic impact of renewable resources and advanced technologies for green hydrogen production: Trends and perspectives,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 5364–5382, 2024. https://doi.org/10.1016/j.ijhydene.2023.06.337
  • A. Awais, S. Khan, T. Chhabra, S. Tariq, M. S. Javed, H. Li, S. R. Naqvi, S. Rajendran, R. Luque, and I. Ahmad, “Synergic impact of renewable resources and advanced technologies for green hydrogen production: Trends and perspectives,” Int. J. Hydrogen Energy, vol. 49, no. 6, pp. 2351–2365, 2024. https://doi.org/10.1016/j.ijhydene.2023.06.337
  • T. Ayiguzhali, Q. Chang, L. Xie, Z. Z. Xu, T. Z., and Z. Song, “Current Status of Green Hydrogen Production Technology: A Review,” Sustainability, vol. 16, no. 20, pp. 9070–9083, 2024. https://doi.org/10.3390/su16209070
  • S. Baral and J. Šebo, “Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems,” Heliyon, vol. 10, no. 3, p. e25742, 2024. https://doi.org/10.1016/j.heliyon.2024.e25742
  • P. Benalcazar and A. Komorowska, “Techno-economics of Green Hydrogen: Present Trends and Future Prospects,” Energy, Environment, and Sustainability, vol. 18, no. 4, pp. 387–402, 2024. https://doi.org/10.1007/978-981-97-1339-4_23
  • S. Z. Bidattul, J. K. Pin, G. E. H. Mohamed, H. C. Ong, S. M. R. Fattah, A. Rahman, D. L. Nghiem, and T. M. I. Mahlia, “Recent advancement and assessment of green hydrogen production technologies,” Renew. Sustain. Energy Rev., vol. 18, no. 1, pp. 101–120, 2024. https://doi.org/10.1016/j.rser.2023.113941
  • A.-M. Chiroșcă, E. Rusu, and V. Mînzu, “Green Hydrogen—Production and Storage Methods: Current Status and Future Directions,” Energies, vol. 17, no. 23, p. 5820, 2024. https://doi.org/10.3390/en17235820
  • European Commission, A Hydrogen Strategy for a Climate-Neutral Europe, 2020. [Online]. Available: https://energy.ec.europa.eu/system/files/2020-07/hydrogen_strategy_0.pdf
  • I. C. Farhan, B. F. Sadat, M. Islam, W. S. Tanim, and R. M. Meraz, “Unlocking the potential of green hydrogen for a sustainable energy future: A review of production methods and challenges,” Future Energy, vol. 3, no. 4, pp. 78–99, 2024. https://doi.org/10.55670/fpll.fuen.3.4.2
  • N. Gupta and P. Bajaj, “A Comprehensive Analysis of Production, Utilization, And Future Prospects for Green Hydrogen for A Sustainable Future,” Mater. Appl. J., vol. 58, no. 10, pp. 50–53, 2023. https://doi.org/10.33516/maj.v58i10.50-53p
  • H. Shen, P. C. del Granado, R. S. Jorge, and K. Löffler, “Environmental and Climate Impacts of a Large-Scale Deployment of Green Hydrogen in Europe,” Energy Climate Change, vol. 16, no. 3, pp. 135–156, 2024. https://doi.org/10.1016/j.egycc.2024.100133
  • Q. Hassan, S. S. Algburi, A. Z. Sameen, H. M. Salman, and A. K. Al-Jiboory, “A review of green hydrogen production by renewable resources,” Energy Harvesting Syst., vol. 10, no. 2, pp. 89–103, 2023. https://doi.org/10.1515/ehs-2022-0127
  • Hydrogen Council, Hydrogen Insights 2023: A Strategic Perspective on the Role of Hydrogen in the Global Energy Transition, vol. 1, pp. 1–120, 2023.
  • International Energy Agency (IEA), World Energy Outlook 2022, Paris, 2022. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2022
  • IRENA, Renewable Energy Statistics 2023, Abu Dhabi, 2023. [Online]. Available: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023
  • A. Islam, T. Islam, H. Mahmud, O. Raihan, S. M. Islam, H. M. Marwani, M. M. Rahman, A. M. Asiri, M. M. Hasan, M. N. Hasan, M. S. Salman, K. T. Kubra, M. A. Shenashen, M. C. Sheikh, and M. R. Awual, “Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions,” Int. J. Hydrogen Energy, vol. 49, no. 15, pp. 6753–6771, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.142
  • M. Jaradat, S. Almashaileh, C. Bendea, A. Juaidi, G. Bendea, and T. Bungau, “Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments,” Energies, vol. 17, no. 16, p. 3992, 2024. https://doi.org/10.3390/en17163992
  • J. Zhang and J. Li, “Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future,” Energies, vol. 17, no. 16, pp. 64148–64157, 2024. https://doi.org/10.3390/en17164148
  • K. Bhardwaj, “Technological Advancements in Adopting Green Hydrogen in the Power and Energy Sector,” IEEE Region 10 Symposium (TENSYMP), vol. 102, no. 3, pp. 210–225, 2024. https://doi.org/10.1109/tensymp61132.2024.10752303
  • F. Kourougianni, A. Arsalis, A. V. Olympios, G. Yiasoumas, C. Konstantinou, P. Papanastasiou, and G. E. Georghiou, “A comprehensive review of green hydrogen energy systems,” Renew. Energy, vol. 215, p. 120911, 2024. https://doi.org/10.1016/j.renene.2024.120911
  • M. S. Kumar, J. Gupta, S. Berjozkina, and M. Safaraliev, “The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods – A review,” Int. J. Hydrogen Energy, vol. 49, no. 9, pp. 4621–4637, 2024. https://doi.org/10.1016/j.ijhydene.2024.02.255
  • Y. Li, R. Lin, R. O'Shea, V. Thaore, D. M. Wall, and J. D. Murphy, “A perspective on three sustainable hydrogen production technologies with a focus on technology readiness level, cost of production, and life cycle environmental impacts,” Heliyon, vol. 10, no. 4, p. e26637, 2024. https://doi.org/10.1016/j.heliyon.2024.e26637
  • B. Losiewicz, “Technology for Green Hydrogen Production: Desk Analysis,” Energies, vol. 17, no. 17, p. 4514, 2024. https://doi.org/10.3390/en17174514
  • M. Kumar, J. Singla, S. Gupta, S. Berjozkina, and M. Safaraliev, “The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods – A review,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 120–132, 2024. https://doi.org/10.1016/j.ijhydene.2024.02.255
  • M. Sayer, A. Ajanovic, and R. Haas, “Economic and environmental assessment of different hydrogen production and transportation modes,” Int. J. Hydrogen Energy, vol. 49, no. 12, pp. 5003–5015, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.073
  • S. R. Naqvi, B. Kazmi, S. A. A. Taqvi, W. H. Chen, and D. Juchelková, “Techno-economic analysis for advanced methods of green hydrogen production,” Curr. Opin. Green Sustain. Chem., vol. 50, p. 100939, 2024. https://doi.org/10.1016/j.cogsc.2024.100939
  • M. Oyo, “Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments,” Energies, vol. 17, no. 16, p. 3992, 2024. https://doi.org/10.3390/en17163992
  • P. Benalcazar and A. Komorowska, “Techno-economics of Green Hydrogen: Present Trends and Future Prospects,” Energy, Environment, and Sustainability, 2024. https://doi.org/10.1007/978-981-97-1339-4
  • R. Pandya and H. Dharsandiya, “Clean Energy Catalyst: The Rise of Green Hydrogen,” Int. J. Multidiscip. Res., vol. 6, no. 3, p. 22114, 2024. https://doi.org/10.36948/ijfmr.2024.v06i03.22114
  • Q. Hassan, S. Saadoon Algburi, A. Z. Sameen, H. M. Salman, and A. K. Al-Jiboory, “A review of green hydrogen production by renewable resources,” Energy Harvesting Syst., vol. 15, no. 4, pp. 118–132, 2023. https://doi.org/10.1515/ehs-2022-0127
  • S. Raza, B. Kazmi, S. A. A. Taqvi, W. H. Chen, and D. Juchelková, “Techno-economic analysis for advanced methods of green hydrogen production,” Curr. Opin. Green Sustain. Chem., vol. 50, p. 100939, 2024. https://doi.org/10.1016/j.cogsc.2024.100939
  • M. A. Salam, K. Ahmed, M. Marufuzzaman, and A. S. M. Sayem, “Techno-economic prospects of green hydrogen production,” Elsevier Sustainable Energy J., vol. 10, no. 2, pp. 112–130, 2024. https://doi.org/10.1016/b978-0-443-15329-7.00006-5
  • M. Sayer, A. Ajanovic, and R. Haas, “Economic and environmental assessment of different hydrogen production and transportation modes,” Int. J. Hydrogen Energy, vol. 49, no. 14, pp. 7012–7029, 2024. https://doi.org/10.1016/j.ijhydene.2024.04.073
  • M. Sharma, V. V. Tyagi, R. Kouser, K. Kumari, K. Chopra, and R. Kothari, “Green Hydrogen and Climatic Change: Current Status and Future Outlook,” ACS Symp. Ser., vol. 1474, no. 2, pp. 15–32, 2024. https://doi.org/10.1021/bk-2024-1474.ch002
  • H. Shen, P. Crespo del Granado, R. S. Jorge, and K. Löffler, “Environmental and Climate Impacts of a Large-Scale Deployment of Green Hydrogen in Europe,” Energy Climate Change, vol. 5, no. 1, p. 100133, 2024. https://doi.org/10.1016/j.egycc.2024.100133
  • U.S. Department of Energy, U.S. National Clean Hydrogen Strategy and Roadmap, 2020. [Online]. Available: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/us-national-clean-hydrogen-strategy-roadmap.pdf
  • L. Wang, W. Liu, H. Sun, Y. Li, and L. Huang, “Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources,” Energies, vol. 17, no. 14, p. 3548, 2024. https://doi.org/10.3390/en17143548
  • Y. Li, F. Angizeh, M. A. Jafari, J. Chen, and A. Klebnikov, “Green Hydrogen Value Chains: Integrated Framework for Developing and Assessing Viable Scenarios with a Case Study,” in 19th Int. Symp. Grid Tech. (ISGT), 2024, p. 4140. https://doi.org/10.1109/isgt59692.2024.10454147
  • J. Zhang and J. Li, “Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future,” Energies, vol. 17, no. 16, p. 4148, 2024. https://doi.org/10.3390/en17164148
  • D. D. Olodu and A. Erameh, “Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa”, BSJ Eng. Sci., vol. 6, no. 3, pp. 296–307, 2023, doi: 10.34248/bsengineering.1195247.
  • D. D. Olodu, O. I. Ihenyen, and F. Inegbedion, “Advances in Renewable Energy Systems: Integrating Solar, Wind, and Hydropower for a Carbon-Neutral Future”, IJONFEST, vol. 3, no. 1, pp. 14–24, 2025, doi: 10.61150/ijonfest.2025030102.
There are 41 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Dıckson Davıd Olodu 0000-0003-3383-2543

Osagie Imevbore Ihenyen 0000-0003-4499-7845

Andrew Erameh 0000-0002-6463-143X

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date January 2, 2025
Acceptance Date February 9, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE D. D. Olodu, O. I. Ihenyen, and A. Erameh, “Comprehensive Analysis of Green Hydrogen Production: Technologies, Costs, Environmental Impacts, and Policy Frameworks”, JSAT, vol. 3, no. 1, pp. 1–12, 2025, doi: 10.63063/jsat.1611951.

https://jsat.ardahan.edu.tr