Research Article
BibTex RIS Cite

A Study on The Evaluation of Alternative Nitrogen Sources on the Production of Laccase Enzyme

Year 2025, Volume: 3 Issue: 1, 32 - 41, 30.06.2025
https://doi.org/10.63063/jsat.1675145

Abstract

Laccase is an enzyme that oxidizes phenol and non-phenolic compounds found in various natural areas. It can be obtained by isolating different plants, bacteria, and fungi. The enzyme, which has many areas of use in our daily routines, is mainly used actively in the textile, paper, and cosmetic industries and the food industry. Its biochemical properties may vary depending on the different sources that it is isolated from. In this study, the enzyme that has a wide use area in the food industry was produced by Trametes versicolor in the erlenmeyer scale. It was investigated whether a new nitrogen source, corn extract, or whatever can be an alternative to yeast extract in the composition of the DM medium. It was found that the highest enzyme activity value was determined as 2012.3 U/L in the medium labeled as MB3, which contained corn extract instead of the same amount of yeast extract. In addition, the highest total protein content was observed in the productions with MB3 medium, at 56.8 mg/L. When the specific activities were compared, approximately 12-fold higher specific activity was observed in the production with MB3 medium, according to the DM medium. As a result of this study, it was shown that corn extract can be an alternative to yeast extract in the production of laccase enzyme.

Project Number

Çalışma için herhangi bir projeden finansal destek alınmamıştır

References

  • S. Habtemariam, “Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: Targets and efficacy,” 2020. doi: 10.3390/BIOMEDICINES8050135.
  • O. O. Ajibola et al., “Turkey tail mushroom (Trametes versicolor): an edible macrofungi with immense medicinal properties,” Curr Opin Food Sci, vol. 58, p. 101191, Aug. 2024, doi: 10.1016/J.COFS.2024.101191.
  • Y. Jing et al., “Research Progress on the Extraction, Structure, and Bioactivities of Polysaccharides from Coriolus versicolor,” 2022. doi: 10.3390/foods11142126.
  • R. D’amico et al., “Hericium erinaceus and coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury,” Antioxidants, vol. 10, no. 6, 2021, doi: 10.3390/antiox10060898.
  • T. Jędrzejewski, J. Sobocińska, M. Pawlikowska, A. Dzialuk, and S. Wrotek, “Extract from the coriolus versicolor fungus as an anti-inflammatory agent with cytotoxic properties against endothelial cells and breast cancer cells,” Int J Mol Sci, vol. 21, no. 23, 2020, doi: 10.3390/ijms21239063.
  • B. Demiralp, I. Büyük, S. Aras, and D. Cansaran-Duman, “Lakkaz enziminin endüstriyel ve biyoteknoloji alaninda kullanimi,” 2015. doi: 10.5505/TurkHijyen.2015.09581.
  • S. Kahraman and O. Yeilada, “Industrial and agricultural wastes as substrates for laccase production by white-rot fungi,” Folia Microbiol (Praha), vol. 46, no. 2, 2001, doi: 10.1007/BF02873591.
  • E. Birhanli and O. Yesilada, “Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode,” Enzyme Microb Technol, vol. 39, no. 6, 2006, doi: 10.1016/j.enzmictec.2006.03.015.
  • A. Gałązka, U. Jankiewicz, and A. Szczepkowski, “Biochemical Characteristics of Laccases and Their Practical Application in the Removal of Xenobiotics from Water,” 2023. doi: 10.3390/app13074394.
  • A. G. Rodrigues, “Secondary Metabolism and Antimicrobial Metabolites of Aspergillus,” in New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, 2016. doi: 10.1016/B978-0-444-63505-1.00006-3.
  • M. F. Hullo, I. Moszer, A. Danchin, and I. Martin-Verstraete, “CotA of Bacillus subtilis is a copper-dependent laccase,” J Bacteriol, vol. 183, no. 18, 2001, doi: 10.1128/JB.183.18.5426-5430.2001.
  • G. Grass and C. Rensing, “CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli,” Biochem Biophys Res Commun, vol. 286, no. 5, 2001, doi: 10.1006/bbrc.2001.5474.
  • M. E. Arias, M. Arenas, J. Rodríguez, J. Soliveri, A. S. Ball, and M. Hernández, “Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335,” Appl Environ Microbiol, vol. 69, no. 4, 2003, doi: 10.1128/AEM.69.4.1953-1958.2003.
  • W. Bao, D. M. O’Malley, R. Whetten, and R. R. Sederoff, “A Laccase Associated with Lignification in Loblolly Pine Xylem,” Science (1979), vol. 260, no. 5108, 1993, doi: 10.1126/science.260.5108.672.
  • P. R. LaFayette, K. E. L. Eriksson, and J. F. D. Dean, “Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera),” Plant Mol Biol, vol. 40, no. 1, 1999, doi: 10.1023/A:1026437406859.
  • G. Janusz et al., “Laccase properties, physiological functions, and evolution,” 2020. doi: 10.3390/ijms21030966.
  • P. Baldrian, “Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme,” Appl Microbiol Biotechnol, vol. 63, no. 5, 2004, doi: 10.1007/s00253-003-1434-0.
  • J. Liu, W. Liu, Y. Cai, X. Liao, Q. Huang, and X. Liang, “Laccase production by trameteshirsuta, characterization, and its capability of decoloring chlorophyll,” Pol J Microbiol, vol. 63, no. 3, 2014, doi: 10.33073/pjm-2014-043.
  • B. Bertrand, F. Martínez-Morales, R. Tinoco, S. Rojas-Trejo, L. Serrano-Carreón, and M. R. Trejo-Hernández, “Induction of laccases in Trametes versicolor by aqueous wood extracts,” World J Microbiol Biotechnol, vol. 30, no. 1, 2014, doi: 10.1007/s11274-013-1420-3.
  • M. J. Han, H. T. Choi, and H. G. Song, “Purification and characterization of laccase from the white rot fungus Trametes versicolor,” Journal of Microbiology, vol. 43, no. 6, 2005.
  • C. F. Thurston, “The structure and function of fungal laccases,” 1994. doi: 10.1099/13500872-140-1-19.
  • N. Jaiswal, V. P. Pandey, and U. N. Dwivedi, “Purification of a thermostable laccase from Leucaena leucocephala using a copper alginate entrapment approach and the application of the laccase in dye decolorization,” Process Biochemistry, vol. 49, no. 7, 2014, doi: 10.1016/j.procbio.2014.04.002.
  • D. Xiong, J. Wen, G. Lu, T. Li, and M. Long, “Isolation, Purification, and Characterization of a Laccase-Degrading Aflatoxin B1 from Bacillus amyloliquefaciens B10,” Toxins (Basel), vol. 14, no. 4, 2022, doi: 10.3390/toxins14040250.
  • Z. Youshuang, Z. Haibo, C. Mingle, W. Zhenzhen, H. Feng, and G. Peiji, “Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization,” Biotechnology and Bioprocess Engineering, vol. 16, no. 5, 2011, doi: 10.1007/s12257-011-0129-0.
  • R. Bourbonnais and M. G. Paice, “Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation,” FEBS Lett, vol. 267, no. 1, 1990, doi: 10.1016/0014-5793(90)80298-W.
  • H. Chen, A. Ji, S. Qiu, Y. Liu, Q. Zhu, and L. Yin, “Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties,” Food Hydrocoll, vol. 76, 2018, doi: 10.1016/j.foodhyd.2016.12.004.
  • V. Gigli, D. Piccinino, D. Avitabile, R. Antiochia, E. Capecchi, and R. Saladino, “Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization,” Int J Mol Sci, vol. 23, no. 11, 2022, doi: 10.3390/ijms23116238.
  • F. Lao and M. M. Giusti, “Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents,” J Cereal Sci, vol. 80, 2018, doi: 10.1016/j.jcs.2018.01.001.
  • H. Xu, M. Liu, H. Liu, B. Zhao, M. Zheng, and J. Liu, “Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK,” J Funct Foods, vol. 84, 2021, doi: 10.1016/j.jff.2021.104582.
  • R. Salvador-Reyes et al., “Andean purple maize to produce extruded breakfast cereals: impact on techno-functional properties and sensory acceptance,” J Sci Food Agric, vol. 103, no. 2, 2023, doi: 10.1002/jsfa.12165.
  • E. Bytyqi, “Biyoteknolojik Yöntemlerle Basidomycetes Türü Mantarlardan Fonksiyonel Ürünlerin Eldesi,” Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Antalya, 2018.
  • G. Songulashvili, V. Elisashvili, S. P. Wasser, E. Nevo, and Y. Hadar, “Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes,” Enzyme Microb Technol, vol. 41, no. 1–2, 2007, doi: 10.1016/j.enzmictec.2006.11.024.
  • G. Songulashvili, V. Elisashvili, S. P. Wasser, E. Nevo, and Y. Hadar, “Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes,” Enzyme Microb Technol, vol. 41, no. 1–2, pp. 57–61, Jul. 2007, doi: 10.1016/J.ENZMICTEC.2006.11.024.
  • V. E. Pinheiro, M. Michelin, A. C. Vici, P. Z. de Almeida, and M. de L. Teixeira de Moraes Polizeli, “Trametes versicolor laccase production using agricultural wastes: a comparative study in Erlenmeyer flasks, bioreactor and tray,” Bioprocess Biosyst Eng, vol. 43, no. 3, 2020, doi: 10.1007/s00449-019-02245-z.
  • J. A. Buswell, Y. Cai, and S.-T. Chang, “Effect of nutrient nitrogen and manganese on manganese peroxidase and lactase production by Lentinula (Lentinus) edodes,” 1995.
  • L. Roy-Arcand and F. S. Archibaldt, “Direct dechiorination of chiorophenolic compounds by laccases from Trametes (Coriolus) versicolor,” Mar. 1991.
  • M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal Biochem, vol. 72, no. 1–2, pp. 248–254, May 1976, doi: 10.1016/0003-2697(76)90527-3.
  • M. Yup Jang, W. Ryul Ryu, and M. Hwan Cho, “Laccase production from repeated batch cultures using free mycelia of Trametes sp.,” Enzyme Microb Technol, vol. 30, no. 6, pp. 741–746, May 2002, doi: 10.1016/S0141-0229(02)00051-0.
  • S. Rodríguez Couto, D. Moldes, A. Liébanas, and A. Sanromán, “Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions,” Biochem Eng J, vol. 15, no. 1, pp. 21–26, Jul. 2003, doi: 10.1016/S1369-703X(02)00180-8.
  • M. S. Revankar and S. S. Lele, “Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138,” World J Microbiol Biotechnol, vol. 22, no. 9, 2006, doi: 10.1007/s11274-006-9136-2.
  • M. do R. Freixo, A. Karmali, C. Frazão, and J. M. Arteiro, “Production of laccase and xylanase from Coriolus versicolor grown on tomato pomace and their chromatographic behaviour on immobilized metal chelates,” Process Biochemistry, vol. 43, no. 11, 2008, doi: 10.1016/j.procbio.2008.07.013.
  • A. M. R. B. Xavier, A. P. M. Tavares, R. Ferreira, and F. Amado, “Trametes versicolor growth and laccase induction with by-products of pulp and paper industry,” Electronic Journal of Biotechnology, vol. 10, no. 3, 2007, doi: 10.2225/vol10-issue3-fulltext-1.
  • M. Ensani, S. Mojerlou, and S. M. Zamani, “Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper,” Brazilian Journal of Microbiology, vol. 54, no. 3, 2023, doi: 10.1007/s42770-023-01096-x.
  • T. Tutal, Ö. Yeşilada, and F. Boran, “Laccase Production of Newly Isolated Trametes versicolor under Batch, Repeated-Batch, and Solid-State Fermentation Processes,” Commagene J Biol, vol. 6, no. 2, 2022, doi: 10.31594/commagene.1197055.
  • K. Kaur, G. Singh, V. Gupta, N. Capalash, and P. Sharma, “Impact of phosphate and other medium components on physiological regulation of bacterial laccase production,” Biotechnol Prog, vol. 33, no. 2, 2017, doi: 10.1002/btpr.2408.
  • F. Wang et al., “Improved laccase production by Trametes versicolor using Copper-Glycyl-L-Histidyl-L-Lysine as a novel and high-efficient inducer,” Front Bioeng Biotechnol, vol. 11, 2023, doi: 10.3389/fbioe.2023.1176352.
  • E. Birhanlı, and O. Yesilada, “Production of Laccase Enzyme in Various Media by Funalia trogii and Trametes versicolor in Repeated Batch Process,” 2017. [Online]. Available: https://www.researchgate.net/publication/319301236

Lakkaz Enziminin Üretiminde Alternatif Azot Kaynakların Değerlendirilmesine Yönelik Bir Araştırma

Year 2025, Volume: 3 Issue: 1, 32 - 41, 30.06.2025
https://doi.org/10.63063/jsat.1675145

Abstract

Lakkaz enzimi doğada çeşitli alanlarda bulunan, fenol ve fenolik olmayan bileşikleri okside eden bir enzimdir. Çeşitli bitkilerden, bakterilerden ve mantarlardan izolasyon yoluyla elde edilebilmektedir. Günlük yaşantımızın birçok noktasında kullanım alanı bulunan enzim, ağırlıklı olarak tekstil, kâğıt ve kozmetik endüstrilerinde ve gıda sanayinde aktif olarak kullanılmaktadır. Elde edildiği kaynağa bağlı olarak biyokimyasal özellikleri değişebilmektedir. Bu çalışma kapsamında özellikle gıda sanayinde geniş kullanım alanı bulunan Trametes versicolor mantarı kullanarak lakkaz enziminin erlenmayer koşulları altında üretimi yapılmıştır. Üretimde kullanılan DM besiyeri kompozisyonunda yer alan maya ekstraktına alternatif olabilecek yeni bir azot kaynağının, mısır özütü, kullanım potansiyeli araştırılmıştır. Besiyeri içeriğine farklı oranlarda ilave edilen mısır özütü ile yapılan üretimlerde en yüksek enzim aktivite değerinin, içinde maya ekstraktının yer almadığı onun yerine aynı miktarda mısır özütü içeren MB3 kodlu besiyerinde 2012.3 U/L olarak tespit edildiği bulunmuştur. Ayrıca en yüksek toplam protein içeriğinin de 56.8mg/L değeri ile MB3 besiyerinde yapılan üretimlerde gözlemlenmiştir. Azot kaynağı olarak maya ekstraktı içeren DM besiyerinde yapılan üretimlere kıyasla MB3 besiyerindeki üretimlerde lakkaz enziminin spesifik aktivitesinin yaklaşık 12 kat arttığı görülmüştür. Çalışma sonucunda lakkaz enzimi üretiminde mısır özütünün maya ekstraktına alternatif olabileceği gösterilmiştir.

Ethical Statement

Bu çalışma için etik kurul onayı gerekmemektedir.

Project Number

Çalışma için herhangi bir projeden finansal destek alınmamıştır

Thanks

Çalışma kapsamında lakkaz üretiminin yapıldığı suşun temini için Doç. Dr. Barçın Karakaş Budak’a teşekkür ederim.

References

  • S. Habtemariam, “Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: Targets and efficacy,” 2020. doi: 10.3390/BIOMEDICINES8050135.
  • O. O. Ajibola et al., “Turkey tail mushroom (Trametes versicolor): an edible macrofungi with immense medicinal properties,” Curr Opin Food Sci, vol. 58, p. 101191, Aug. 2024, doi: 10.1016/J.COFS.2024.101191.
  • Y. Jing et al., “Research Progress on the Extraction, Structure, and Bioactivities of Polysaccharides from Coriolus versicolor,” 2022. doi: 10.3390/foods11142126.
  • R. D’amico et al., “Hericium erinaceus and coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury,” Antioxidants, vol. 10, no. 6, 2021, doi: 10.3390/antiox10060898.
  • T. Jędrzejewski, J. Sobocińska, M. Pawlikowska, A. Dzialuk, and S. Wrotek, “Extract from the coriolus versicolor fungus as an anti-inflammatory agent with cytotoxic properties against endothelial cells and breast cancer cells,” Int J Mol Sci, vol. 21, no. 23, 2020, doi: 10.3390/ijms21239063.
  • B. Demiralp, I. Büyük, S. Aras, and D. Cansaran-Duman, “Lakkaz enziminin endüstriyel ve biyoteknoloji alaninda kullanimi,” 2015. doi: 10.5505/TurkHijyen.2015.09581.
  • S. Kahraman and O. Yeilada, “Industrial and agricultural wastes as substrates for laccase production by white-rot fungi,” Folia Microbiol (Praha), vol. 46, no. 2, 2001, doi: 10.1007/BF02873591.
  • E. Birhanli and O. Yesilada, “Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode,” Enzyme Microb Technol, vol. 39, no. 6, 2006, doi: 10.1016/j.enzmictec.2006.03.015.
  • A. Gałązka, U. Jankiewicz, and A. Szczepkowski, “Biochemical Characteristics of Laccases and Their Practical Application in the Removal of Xenobiotics from Water,” 2023. doi: 10.3390/app13074394.
  • A. G. Rodrigues, “Secondary Metabolism and Antimicrobial Metabolites of Aspergillus,” in New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, 2016. doi: 10.1016/B978-0-444-63505-1.00006-3.
  • M. F. Hullo, I. Moszer, A. Danchin, and I. Martin-Verstraete, “CotA of Bacillus subtilis is a copper-dependent laccase,” J Bacteriol, vol. 183, no. 18, 2001, doi: 10.1128/JB.183.18.5426-5430.2001.
  • G. Grass and C. Rensing, “CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli,” Biochem Biophys Res Commun, vol. 286, no. 5, 2001, doi: 10.1006/bbrc.2001.5474.
  • M. E. Arias, M. Arenas, J. Rodríguez, J. Soliveri, A. S. Ball, and M. Hernández, “Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335,” Appl Environ Microbiol, vol. 69, no. 4, 2003, doi: 10.1128/AEM.69.4.1953-1958.2003.
  • W. Bao, D. M. O’Malley, R. Whetten, and R. R. Sederoff, “A Laccase Associated with Lignification in Loblolly Pine Xylem,” Science (1979), vol. 260, no. 5108, 1993, doi: 10.1126/science.260.5108.672.
  • P. R. LaFayette, K. E. L. Eriksson, and J. F. D. Dean, “Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera),” Plant Mol Biol, vol. 40, no. 1, 1999, doi: 10.1023/A:1026437406859.
  • G. Janusz et al., “Laccase properties, physiological functions, and evolution,” 2020. doi: 10.3390/ijms21030966.
  • P. Baldrian, “Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme,” Appl Microbiol Biotechnol, vol. 63, no. 5, 2004, doi: 10.1007/s00253-003-1434-0.
  • J. Liu, W. Liu, Y. Cai, X. Liao, Q. Huang, and X. Liang, “Laccase production by trameteshirsuta, characterization, and its capability of decoloring chlorophyll,” Pol J Microbiol, vol. 63, no. 3, 2014, doi: 10.33073/pjm-2014-043.
  • B. Bertrand, F. Martínez-Morales, R. Tinoco, S. Rojas-Trejo, L. Serrano-Carreón, and M. R. Trejo-Hernández, “Induction of laccases in Trametes versicolor by aqueous wood extracts,” World J Microbiol Biotechnol, vol. 30, no. 1, 2014, doi: 10.1007/s11274-013-1420-3.
  • M. J. Han, H. T. Choi, and H. G. Song, “Purification and characterization of laccase from the white rot fungus Trametes versicolor,” Journal of Microbiology, vol. 43, no. 6, 2005.
  • C. F. Thurston, “The structure and function of fungal laccases,” 1994. doi: 10.1099/13500872-140-1-19.
  • N. Jaiswal, V. P. Pandey, and U. N. Dwivedi, “Purification of a thermostable laccase from Leucaena leucocephala using a copper alginate entrapment approach and the application of the laccase in dye decolorization,” Process Biochemistry, vol. 49, no. 7, 2014, doi: 10.1016/j.procbio.2014.04.002.
  • D. Xiong, J. Wen, G. Lu, T. Li, and M. Long, “Isolation, Purification, and Characterization of a Laccase-Degrading Aflatoxin B1 from Bacillus amyloliquefaciens B10,” Toxins (Basel), vol. 14, no. 4, 2022, doi: 10.3390/toxins14040250.
  • Z. Youshuang, Z. Haibo, C. Mingle, W. Zhenzhen, H. Feng, and G. Peiji, “Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization,” Biotechnology and Bioprocess Engineering, vol. 16, no. 5, 2011, doi: 10.1007/s12257-011-0129-0.
  • R. Bourbonnais and M. G. Paice, “Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation,” FEBS Lett, vol. 267, no. 1, 1990, doi: 10.1016/0014-5793(90)80298-W.
  • H. Chen, A. Ji, S. Qiu, Y. Liu, Q. Zhu, and L. Yin, “Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties,” Food Hydrocoll, vol. 76, 2018, doi: 10.1016/j.foodhyd.2016.12.004.
  • V. Gigli, D. Piccinino, D. Avitabile, R. Antiochia, E. Capecchi, and R. Saladino, “Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization,” Int J Mol Sci, vol. 23, no. 11, 2022, doi: 10.3390/ijms23116238.
  • F. Lao and M. M. Giusti, “Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents,” J Cereal Sci, vol. 80, 2018, doi: 10.1016/j.jcs.2018.01.001.
  • H. Xu, M. Liu, H. Liu, B. Zhao, M. Zheng, and J. Liu, “Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK,” J Funct Foods, vol. 84, 2021, doi: 10.1016/j.jff.2021.104582.
  • R. Salvador-Reyes et al., “Andean purple maize to produce extruded breakfast cereals: impact on techno-functional properties and sensory acceptance,” J Sci Food Agric, vol. 103, no. 2, 2023, doi: 10.1002/jsfa.12165.
  • E. Bytyqi, “Biyoteknolojik Yöntemlerle Basidomycetes Türü Mantarlardan Fonksiyonel Ürünlerin Eldesi,” Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Antalya, 2018.
  • G. Songulashvili, V. Elisashvili, S. P. Wasser, E. Nevo, and Y. Hadar, “Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes,” Enzyme Microb Technol, vol. 41, no. 1–2, 2007, doi: 10.1016/j.enzmictec.2006.11.024.
  • G. Songulashvili, V. Elisashvili, S. P. Wasser, E. Nevo, and Y. Hadar, “Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes,” Enzyme Microb Technol, vol. 41, no. 1–2, pp. 57–61, Jul. 2007, doi: 10.1016/J.ENZMICTEC.2006.11.024.
  • V. E. Pinheiro, M. Michelin, A. C. Vici, P. Z. de Almeida, and M. de L. Teixeira de Moraes Polizeli, “Trametes versicolor laccase production using agricultural wastes: a comparative study in Erlenmeyer flasks, bioreactor and tray,” Bioprocess Biosyst Eng, vol. 43, no. 3, 2020, doi: 10.1007/s00449-019-02245-z.
  • J. A. Buswell, Y. Cai, and S.-T. Chang, “Effect of nutrient nitrogen and manganese on manganese peroxidase and lactase production by Lentinula (Lentinus) edodes,” 1995.
  • L. Roy-Arcand and F. S. Archibaldt, “Direct dechiorination of chiorophenolic compounds by laccases from Trametes (Coriolus) versicolor,” Mar. 1991.
  • M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal Biochem, vol. 72, no. 1–2, pp. 248–254, May 1976, doi: 10.1016/0003-2697(76)90527-3.
  • M. Yup Jang, W. Ryul Ryu, and M. Hwan Cho, “Laccase production from repeated batch cultures using free mycelia of Trametes sp.,” Enzyme Microb Technol, vol. 30, no. 6, pp. 741–746, May 2002, doi: 10.1016/S0141-0229(02)00051-0.
  • S. Rodríguez Couto, D. Moldes, A. Liébanas, and A. Sanromán, “Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions,” Biochem Eng J, vol. 15, no. 1, pp. 21–26, Jul. 2003, doi: 10.1016/S1369-703X(02)00180-8.
  • M. S. Revankar and S. S. Lele, “Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138,” World J Microbiol Biotechnol, vol. 22, no. 9, 2006, doi: 10.1007/s11274-006-9136-2.
  • M. do R. Freixo, A. Karmali, C. Frazão, and J. M. Arteiro, “Production of laccase and xylanase from Coriolus versicolor grown on tomato pomace and their chromatographic behaviour on immobilized metal chelates,” Process Biochemistry, vol. 43, no. 11, 2008, doi: 10.1016/j.procbio.2008.07.013.
  • A. M. R. B. Xavier, A. P. M. Tavares, R. Ferreira, and F. Amado, “Trametes versicolor growth and laccase induction with by-products of pulp and paper industry,” Electronic Journal of Biotechnology, vol. 10, no. 3, 2007, doi: 10.2225/vol10-issue3-fulltext-1.
  • M. Ensani, S. Mojerlou, and S. M. Zamani, “Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper,” Brazilian Journal of Microbiology, vol. 54, no. 3, 2023, doi: 10.1007/s42770-023-01096-x.
  • T. Tutal, Ö. Yeşilada, and F. Boran, “Laccase Production of Newly Isolated Trametes versicolor under Batch, Repeated-Batch, and Solid-State Fermentation Processes,” Commagene J Biol, vol. 6, no. 2, 2022, doi: 10.31594/commagene.1197055.
  • K. Kaur, G. Singh, V. Gupta, N. Capalash, and P. Sharma, “Impact of phosphate and other medium components on physiological regulation of bacterial laccase production,” Biotechnol Prog, vol. 33, no. 2, 2017, doi: 10.1002/btpr.2408.
  • F. Wang et al., “Improved laccase production by Trametes versicolor using Copper-Glycyl-L-Histidyl-L-Lysine as a novel and high-efficient inducer,” Front Bioeng Biotechnol, vol. 11, 2023, doi: 10.3389/fbioe.2023.1176352.
  • E. Birhanlı, and O. Yesilada, “Production of Laccase Enzyme in Various Media by Funalia trogii and Trametes versicolor in Repeated Batch Process,” 2017. [Online]. Available: https://www.researchgate.net/publication/319301236
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Industrial Biotechnology (Other), Food Biotechnology
Journal Section Research Articles
Authors

Fatma Ersöz 0000-0002-9647-1231

Project Number Çalışma için herhangi bir projeden finansal destek alınmamıştır
Early Pub Date June 26, 2025
Publication Date June 30, 2025
Submission Date April 13, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE F. Ersöz, “Lakkaz Enziminin Üretiminde Alternatif Azot Kaynakların Değerlendirilmesine Yönelik Bir Araştırma”, JSAT, vol. 3, no. 1, pp. 32–41, 2025, doi: 10.63063/jsat.1675145.

https://jsat.ardahan.edu.tr