Research Article
BibTex RIS Cite

(2+1)-Boyutlu Ablowitz-Kaup-Newell-Segur Denklemi için Gezici Dalga Çözümlerinin İncelenmesi

Year 2025, Volume: 3 Issue: 1, 50 - 57, 30.06.2025
https://doi.org/10.63063/jsat.1678536

Abstract

Bu çalışmada, geliştirilmiş alt denklem yöntemi (2+1)-Ablowitz-Kaup-Newell-Segur (AKNS) denklemine uygulanmıştır. Bu analitik yöntemle trigonometrik, hiperbolik ve rasyonel tipte çözümleri üretilmiştir. Durağan dalgayı temsil eden kontur, 3 boyutlu ve 2 boyutlu grafikleri bu çözümlerdeki sabitlere rastgele değerler verilerek çizilir. Sembolik hesaplama kullanılarak, bu yöntemin doğrusal olmayan evrim denklemlerinin çözümlerini üretmek için etkili, güçlü ve güvenilir bir araç olduğu gösterilmiştir.

Thanks

This work was created as a part of the research process on "Travelling Wave Solutions of Nonlinear Partial Differential Equations" carried out in the Department of Mathematics, Faculty of Arts and Sciences, Kafkas University. The author would like to express her sincere gratitude to Kafkas University for their great contribution to the success of the study

References

  • Guo, M., Dong, H., Liu, J., & Yang, H. (2019). The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method. Nonlinear Analysis: Modelling and Control, 24(1), 1-19.
  • Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D., & Belic, M. (2014). Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz, 68(11-12), 525-530.
  • Wu, X. H. B., & He, J. H. (2008). Exp-function method and its application to nonlinear equations. Chaos, Solitons & Fractals, 38(3), 903-910.
  • Kumar, S., Singh, K., & Gupta, R. K. (2012). Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method. Pramana, 79(1), 41-60.
  • Durur, H., Aydın, A., & Arslantürk, R. (2023). Investigation of Hyperbolic Type Solutions of the Fitzhugh-Nagumo Model in Neuroscience. Journal of Studies in Advanced Technologies 1(1), 11-16.
  • Subaşı, M., & Durur, H. (2023). Refraction simulation of nonlinear wave for Shallow Water-Like equation. Celal Bayar University Journal of Science, 19(1), 47-52.
  • Mathanaranjan, T. (2021). Soliton solutions of deformed nonlinear Schrödinger equations using ansatz method. International Journal of Applied and Computational Mathematics, 7(4), 159.
  • Ali, K. K., Seadawy, A. R., Yokus, A., Yilmazer, R., & Bulut, H. (2020). Propagation of dispersive wave solutions for (3+1)-dimensional nonlinear modified Zakharov–Kuznetsov equation in plasma physics. International Journal of Modern Physics B, 34(25), 2050227.
  • Younis, M., Sulaiman, T. A., Bilal, M., Rehman, S. U., & Younas, U. (2020). Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Communications in Theoretical Physics, 72(6), 065001.
  • Seadawy, A. R., Lu, D., Nasreen, N., & Nasreen, S. (2019). Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. Physica A: Statistical Mechanics and its Applications, 534, 122155.
  • Duran, S. (2021). Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics. International Journal of Modern Physics B, 35(09), 2150130.
  • Murad, M. A. S., Ismael, H. F., Hamasalh, F. K., Shah, N. A., & Eldin, S. M. (2023). Optical soliton solutions for time-fractional Ginzburg–Landau equation by a modified sub-equation method. Results in Physics, 53, 106950.
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012). A Generalized and Improved (G′/G)‐Expansion Method for Nonlinear Evolution Equations. Mathematical Problems in Engineering, 2012(1), 459879.
  • Liu, S., Fu, Z., Liu, S., & Zhao, Q. (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A, 289(1-2), 69-74.
  • Abdelrahman, M. A., Zahran, E. H., & Khater, M. M. (2015). The Exp (-φ (ξ))-expansion method and its application for solving nonlinear evolution equations. International Journal of Modern Nonlinear Theory and Application, 4(01), 37.
  • Wang, Q., Chen, Y., & Zhang, H. (2005). A new Riccati equation rational expansion method and its application to (2+ 1)-dimensional Burgers equation. Chaos, Solitons & Fractals, 25(5), 1019-1028.
  • Durur, H., & Yokus, A. (2021). Exact solutions of (2+1)-Ablowitz-Kaup-Newell-Segur equation. Applied Mathematics and Nonlinear Sciences, 6(2), 381-386.
  • Khater, M. M. (2024). Computational method for obtaining solitary wave solutions of the (2+ 1)-dimensional AKNS equation and their physical significance. Modern Physics Letters B, 38(19), 2350252.
  • Issasfa, A., & Lin, J. (2020). Lump and mixed rogue-soliton solutions to the 2+ 1 dimensional Ablowitz-Kaup-Newell-Segur equation. Journal of Applied Analysis & Computation, 10(1), 314-325.
  • Khater, M. M. (2024). Computational method for obtaining solitary wave solutions of the (2+1)-dimensional AKNS equation and their physical significance. Modern Physics Letters B, 38(19), 2350252.
  • Alfalqi, S. H., & Khater, M. M. (2024). Efficiency and reliability of computational techniques in solving the (2+1)-dimensional AKNS equation: a solitary wave classification study. Optical and Quantum Electronics, 56(4), 665.
  • Duran, S., Yokuş, A., Durur, H., & Kaya, D. (2021). Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics. Modern Physics Letters B, 35(26), 2150363.

Investigation of Travelling Wave Solutions for the (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation

Year 2025, Volume: 3 Issue: 1, 50 - 57, 30.06.2025
https://doi.org/10.63063/jsat.1678536

Abstract

In this study, modified sub equation method was applied to the (2+1)-Ablowitz-Kaup-Newell-Segur (AKNS) equation. This analytical method, trigonometric, hyperbolic and rational type solutions have been produced. Contour, 3D and 2D graphs representing stationary wave are drawn by giving random values to the constants in these solutions. Using symbolic computation, this method is shown to be an effective, powerful and reliable tool for generating nonlinear evolution equations (NEDEs).

Thanks

This work was created as a part of the research process on "Travelling Wave Solutions of Nonlinear Partial Differential Equations" carried out in the Department of Mathematics, Faculty of Arts and Sciences, Kafkas University. The author would like to express her sincere gratitude to Kafkas University for their great contribution to the success of the study

References

  • Guo, M., Dong, H., Liu, J., & Yang, H. (2019). The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method. Nonlinear Analysis: Modelling and Control, 24(1), 1-19.
  • Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D., & Belic, M. (2014). Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz, 68(11-12), 525-530.
  • Wu, X. H. B., & He, J. H. (2008). Exp-function method and its application to nonlinear equations. Chaos, Solitons & Fractals, 38(3), 903-910.
  • Kumar, S., Singh, K., & Gupta, R. K. (2012). Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method. Pramana, 79(1), 41-60.
  • Durur, H., Aydın, A., & Arslantürk, R. (2023). Investigation of Hyperbolic Type Solutions of the Fitzhugh-Nagumo Model in Neuroscience. Journal of Studies in Advanced Technologies 1(1), 11-16.
  • Subaşı, M., & Durur, H. (2023). Refraction simulation of nonlinear wave for Shallow Water-Like equation. Celal Bayar University Journal of Science, 19(1), 47-52.
  • Mathanaranjan, T. (2021). Soliton solutions of deformed nonlinear Schrödinger equations using ansatz method. International Journal of Applied and Computational Mathematics, 7(4), 159.
  • Ali, K. K., Seadawy, A. R., Yokus, A., Yilmazer, R., & Bulut, H. (2020). Propagation of dispersive wave solutions for (3+1)-dimensional nonlinear modified Zakharov–Kuznetsov equation in plasma physics. International Journal of Modern Physics B, 34(25), 2050227.
  • Younis, M., Sulaiman, T. A., Bilal, M., Rehman, S. U., & Younas, U. (2020). Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Communications in Theoretical Physics, 72(6), 065001.
  • Seadawy, A. R., Lu, D., Nasreen, N., & Nasreen, S. (2019). Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. Physica A: Statistical Mechanics and its Applications, 534, 122155.
  • Duran, S. (2021). Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics. International Journal of Modern Physics B, 35(09), 2150130.
  • Murad, M. A. S., Ismael, H. F., Hamasalh, F. K., Shah, N. A., & Eldin, S. M. (2023). Optical soliton solutions for time-fractional Ginzburg–Landau equation by a modified sub-equation method. Results in Physics, 53, 106950.
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012). A Generalized and Improved (G′/G)‐Expansion Method for Nonlinear Evolution Equations. Mathematical Problems in Engineering, 2012(1), 459879.
  • Liu, S., Fu, Z., Liu, S., & Zhao, Q. (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A, 289(1-2), 69-74.
  • Abdelrahman, M. A., Zahran, E. H., & Khater, M. M. (2015). The Exp (-φ (ξ))-expansion method and its application for solving nonlinear evolution equations. International Journal of Modern Nonlinear Theory and Application, 4(01), 37.
  • Wang, Q., Chen, Y., & Zhang, H. (2005). A new Riccati equation rational expansion method and its application to (2+ 1)-dimensional Burgers equation. Chaos, Solitons & Fractals, 25(5), 1019-1028.
  • Durur, H., & Yokus, A. (2021). Exact solutions of (2+1)-Ablowitz-Kaup-Newell-Segur equation. Applied Mathematics and Nonlinear Sciences, 6(2), 381-386.
  • Khater, M. M. (2024). Computational method for obtaining solitary wave solutions of the (2+ 1)-dimensional AKNS equation and their physical significance. Modern Physics Letters B, 38(19), 2350252.
  • Issasfa, A., & Lin, J. (2020). Lump and mixed rogue-soliton solutions to the 2+ 1 dimensional Ablowitz-Kaup-Newell-Segur equation. Journal of Applied Analysis & Computation, 10(1), 314-325.
  • Khater, M. M. (2024). Computational method for obtaining solitary wave solutions of the (2+1)-dimensional AKNS equation and their physical significance. Modern Physics Letters B, 38(19), 2350252.
  • Alfalqi, S. H., & Khater, M. M. (2024). Efficiency and reliability of computational techniques in solving the (2+1)-dimensional AKNS equation: a solitary wave classification study. Optical and Quantum Electronics, 56(4), 665.
  • Duran, S., Yokuş, A., Durur, H., & Kaya, D. (2021). Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics. Modern Physics Letters B, 35(26), 2150363.
There are 22 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other)
Journal Section Research Articles
Authors

Hülya Durur 0000-0002-9297-6873

Early Pub Date June 26, 2025
Publication Date June 30, 2025
Submission Date April 17, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

IEEE H. Durur, “Investigation of Travelling Wave Solutions for the (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation”, JSAT, vol. 3, no. 1, pp. 50–57, 2025, doi: 10.63063/jsat.1678536.

https://jsat.ardahan.edu.tr