Research Article
BibTex RIS Cite
Year 2024, , 315 - 326, 31.12.2024
https://doi.org/10.47481/jscmt.1608347

Abstract

References

  • 1. Ariffin, N. F., Nasrudin, N. N., Alias, A., Lim, N. H. A. S., Hasim, A. M., & Zaimi, M. N. S. (2024). Thermal waste replacement as a sustainable approach to reinforced concrete beam design: A finite element study. Open Civil Engineering Journal, 18(1), e18741495285908. [CrossRef]
  • 2. Rahmat, M. S., Mokhatar, S. N., Razali, B. A., Hadipramana, J., & Hakim, S. J. S. (2023). Numerical modelling of impact loads on RC beams utilizing spent garnet as a replacement for fine aggregate. Journal of Advanced Research in Applied Mechanics, 107(1), 41-54. [CrossRef]
  • 3. Özkılıç, Y. O., Althaqafi, E., Bahrami, A., Aksoylu, C., Karalar, M., Özdöner, N., … & Thomas, B. S. (2024). Influence of ceramic waste powder on shear performance of environmentally friendly reinforced concrete beams. Scientific Reports, 14(1), 10401. [CrossRef]
  • 4. Aziz, P. L., & Abdulkadir, M. R. (2022). Mechanical properties and flexural strength of reinforced concrete beams containing waste material as partial replacement for coarse aggregates. International Journal of Concrete Structures and Materials, 16(1), 56. [CrossRef]
  • 5. Özkaynak, H., & Özbay, A. E. Ö. (2019). The effect of waste newspaper on compressive strength of concrete mortar. 4th Eurasian Conference on Civil and Environmental Engineering (ECOCEE). İstanbul.
  • 6. Ellis, L. A., Leon, L. P., & Charran, A. V. (2023). Investigating the use of recycled concrete as aggregates in the construction of structural beams. West Indian Journal of Engineering, 45(2), 4-13. [CrossRef]
  • 7. Hama, S. M., Ali, Z. M., Zayan, H. S., & Mahmoud, A. S. (2023). Structural behavior of reinforced concrete incorporating glass waste as coarse aggregate. Journal of Structural Integrity and Maintenance, 8(1), 59-66. [CrossRef]
  • 8. El-Sayed, T. A., Erfan, A. M., & El-Naby, R. M. A. (2019). Flexural behavior of RC beams by using agricultural waste as a cement reinforcement material. Journal of Engineering Research and Reports, 7(1), 1-12. [CrossRef]
  • 9. Karimi Pour, A., Shirkhani, A., Kırgız, M. S., & Noroozinejad Farsangi, E. (2023). Influence of fiber type on the performance of reinforced concrete beams made of waste aggregates: Experimental, numerical, and cost analyses. Practice Periodical on Structural Design and Construction, 28(2), 04023007. [CrossRef]
  • 10. Malagavelli, V., & Rao, P. N. (2010). High-performance concrete with GGBS and ROBO sand. International Journal of Engineering Science and Technology, 2(10), 5107-5113.
  • 11. Al-Hamrani, A., Kucukvar, M., Alnahhal, W., Mahdi, E., & Onat, N. C. (2021). Green concrete for a circular economy: A review on sustainability, durability, and structural properties. Materials, 14(2), 351. [CrossRef]
  • 12. Parashar, A. K., Sharma, P., & Sharma, N. (2022). Effect on the strength of GGBS and fly ash based geopolymer concrete. Materials Today: Proceedings, 62, 4130-4133. [CrossRef]
  • 13. Liu, Z., Takasu, K., Koyamada, H., & Suyama, H. (2022). A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS. Construction and Building Materials, 316, 125776. [CrossRef]
  • 14. Panda, R., & Sahoo, T. K. (2021). Effect of replacement of GGBS and fly ash with cement in concrete. In Lecture Notes in Civil Engineering, 75, 811-818. Springer. [CrossRef]
  • 15. Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties-A review. Construction and Building Materials, 105, 423-434. [CrossRef]
  • 16. Kumar, V. R. P., Gunasekaran, K., & Shyamala, T. (2019). Characterization study on coconut shell concrete with partial replacement of cement by GGBS. Journal of Building Engineering, 26, 100830. [CrossRef]
  • 17. Chandrashekar, V., PS, T., Madhu, K. S., & KB, D. T. P. (2018). Effect on the engineering properties of pervious concrete by partial replacement of cement with GGBS. GRD Journal of Engineering, 3, 1-7. [CrossRef]
  • 18. Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505-514. [CrossRef]
  • 19. Hussain, F., Kaur, I., & Hussain, A. (2020). Reviewing the influence of GGBFS on concrete properties. Materials Today: Proceedings, 32, 997-1004. [CrossRef]
  • 20. Dixit, A., & Hooda, Y. (2019). Experimental evaluation on compressive and tensile behavior of concrete utilizing GGBS, fly ash, and recycled aggregates. International Journal of Engineering and Advanced Technology, 8(5), 2249-8958.
  • 21. Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research, 30(7), 1031-1036. [CrossRef]
  • 22. Sangeetha, S. P., & Joanna, P. S. (2014). Flexural behaviour of reinforced concrete beams with partial replacement of GGBS. American Journal of Engineering Research, 3(1), 119-127.
  • 23. Khatib, J. M., & Hibbert, J. J. (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and Building Materials, 19(6), 460-472. [CrossRef]
  • 24. Hawileh, R. A., Abdalla, J. A., Fardmanesh, F., Shahsana, P., & Khalili, A. (2017). Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement. Archives of Civil and Mechanical Engineering, 17, 511-519. [CrossRef]
  • 25. Hawileh, R. A., Badrawi, H. A., Makahleh, H. Y., Karzad, A. S., & Abdalla, J. A. (2022). Behavior of reinforced concrete beams cast with a proposed geopolymer concrete (GPC) mix. International Journal of Applied Science and Engineering, 19(2), 1-11. [CrossRef]
  • 26. Bai, X., Zhou, H., Bian, X., Chen, X., & Ren, C. (2024). Compressive strength, permeability, and abrasion resistance of pervious concrete incorporating recycled aggregate. Sustainability, 16(10), 4063. [CrossRef]
  • 27. Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8, 157-164. [CrossRef]
  • 28. Zhang, Z., & Li, H. (2024). Flexural fatigue behavior of prestressed high-performance concrete bridges with double mineral fine powder admixture: An experimental study. Applied Sciences, 14(17), 7511. [CrossRef]
  • 29. Gautam, A., & Tung, S. (2024). Advancing sustainability in concrete construction: Enhancing thermal resilience and structural strength with ground granulated blast furnace slag. Asian Journal of Civil Engineering, 25(8), 6119-6129. [CrossRef]
  • 30. Parashar, A. K., Kumar, A., Singh, P., & Gupta, N. (2024). Study on the mechanical properties of GGBS-based geopolymer concrete with steel fiber by cluster and regression analysis. Asian Journal of Civil Engineering, 25(3), 2679-2686. [CrossRef]
  • 31. Oti, J., Adeleke, B. O., Mudiyanselage, P. R., & Kinutahia, J. (2024). A comprehensive performance evaluation of GGBS-based geopolymer concrete activated by a rice husk ash-synthesised sodium silicate solution and sodium hydroxide. Recycling, 9(2), 23. [CrossRef]
  • 32. Thakur, G., Singh, Y., Singh, R., Prakash, C., Saxena, K. K., Pramanik, A., … & Subramaniam, S. (2022). Development of GGBS-based geopolymer concrete incorporated with polypropylene fibers as sustainable materials. Sustainability, 14(17), 10639. [CrossRef]
  • 33. Kanagaraj, B., Anand, N., Alengaram, U. J., & Raj, R. S. (2023). Engineering properties, sustainability performance, and life cycle assessment of high-strength self-compacting geopolymer concrete composites. Construction and Building Materials, 388, 131613. [CrossRef]
  • 34. Deepa, K., Murugesan, P., Valliappan, V., & Choudary, S. (2023). Experimental research on pervious concrete performance with partial replacement of foundry sand nano and GGBS. Materials Today: Proceedings, 103, 534-540. [CrossRef]
  • 35. Mironovs, V., Broņka, J., Korjakins, A., & Kazjonovs, J. (2011). Possibilities of application of iron-containing waste materials in manufacturing of heavy concrete. Civil Engineering ’11 - 3rd International Scientific Conference, Proceedings, 3, 14-19.
  • 36. Olutoge, F., Onugba, M., & Ocholi, A. (2016). Strength properties of concrete produced with iron filings as sand replacement. British Journal of Applied Science and Technology, 18(3), 1-6. [CrossRef]
  • 37. Ekop, I. E., Okeke, C. J., & Inyang, E. V. (2022). Comparative study on recycled iron filings and glass particles as a potential fine aggregate in concrete. Resources, Conservation & Recycling Advances, 15, 200093. [CrossRef]
  • 38. Helmand, P., & Saini, S. (2019). Mechanical properties of concrete in presence of iron filings as complete replacement of fine aggregates. Materials Today: Proceedings, 15, 536-545. [CrossRef]
  • 39. American Concrete Institute. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. ACI 318-08.

Flexural behavior of sustainable high-strength RC beams with GGBS and iron filings incorporation

Year 2024, , 315 - 326, 31.12.2024
https://doi.org/10.47481/jscmt.1608347

Abstract

This experimental study investigates the behavior of sustainable high-strength reinforced concrete (HSRC) beams when cement is partially replaced with ground granulated blast furnace slag (GGBS) and sand with iron filings (IF). Eight rectangular HSRC beams were experienced to four-point loading to examine the effects of these substitutions. The cement was replaced with GGBS at three percentages (10%, 30%, and 50%), with and without a 10% substitution of sand by IF. The results showed that substituting 30% GGBS caused a minor reduction in beam strength, while higher GGBS percentages (above 30%) led to a more significant decrease. However, adding 10% IF improved the beams' strength, demonstrating its potential as a reinforcing material. All beams exhibited similar failure patterns under peak loads.
Similarly, the load-deflection behavior of all beams showed consistent patterns across different configurations. However, beams of an optimum replacement consisting of 30% GGBS and 10% IF can support larger values of load-carrying capacity, moment-resisting capacity, and energy absorption than those with other mixtures. The study shows that while GGBS could enhance sustainability, it should be judiciously adopted to maintain structural integrity. Contrariwise, IF shows excellent potential in improving the HSRC beams with improvement in sustainability. It tends to create a balance in material substitution to optimize performance and environmental impacts in concrete structures.

References

  • 1. Ariffin, N. F., Nasrudin, N. N., Alias, A., Lim, N. H. A. S., Hasim, A. M., & Zaimi, M. N. S. (2024). Thermal waste replacement as a sustainable approach to reinforced concrete beam design: A finite element study. Open Civil Engineering Journal, 18(1), e18741495285908. [CrossRef]
  • 2. Rahmat, M. S., Mokhatar, S. N., Razali, B. A., Hadipramana, J., & Hakim, S. J. S. (2023). Numerical modelling of impact loads on RC beams utilizing spent garnet as a replacement for fine aggregate. Journal of Advanced Research in Applied Mechanics, 107(1), 41-54. [CrossRef]
  • 3. Özkılıç, Y. O., Althaqafi, E., Bahrami, A., Aksoylu, C., Karalar, M., Özdöner, N., … & Thomas, B. S. (2024). Influence of ceramic waste powder on shear performance of environmentally friendly reinforced concrete beams. Scientific Reports, 14(1), 10401. [CrossRef]
  • 4. Aziz, P. L., & Abdulkadir, M. R. (2022). Mechanical properties and flexural strength of reinforced concrete beams containing waste material as partial replacement for coarse aggregates. International Journal of Concrete Structures and Materials, 16(1), 56. [CrossRef]
  • 5. Özkaynak, H., & Özbay, A. E. Ö. (2019). The effect of waste newspaper on compressive strength of concrete mortar. 4th Eurasian Conference on Civil and Environmental Engineering (ECOCEE). İstanbul.
  • 6. Ellis, L. A., Leon, L. P., & Charran, A. V. (2023). Investigating the use of recycled concrete as aggregates in the construction of structural beams. West Indian Journal of Engineering, 45(2), 4-13. [CrossRef]
  • 7. Hama, S. M., Ali, Z. M., Zayan, H. S., & Mahmoud, A. S. (2023). Structural behavior of reinforced concrete incorporating glass waste as coarse aggregate. Journal of Structural Integrity and Maintenance, 8(1), 59-66. [CrossRef]
  • 8. El-Sayed, T. A., Erfan, A. M., & El-Naby, R. M. A. (2019). Flexural behavior of RC beams by using agricultural waste as a cement reinforcement material. Journal of Engineering Research and Reports, 7(1), 1-12. [CrossRef]
  • 9. Karimi Pour, A., Shirkhani, A., Kırgız, M. S., & Noroozinejad Farsangi, E. (2023). Influence of fiber type on the performance of reinforced concrete beams made of waste aggregates: Experimental, numerical, and cost analyses. Practice Periodical on Structural Design and Construction, 28(2), 04023007. [CrossRef]
  • 10. Malagavelli, V., & Rao, P. N. (2010). High-performance concrete with GGBS and ROBO sand. International Journal of Engineering Science and Technology, 2(10), 5107-5113.
  • 11. Al-Hamrani, A., Kucukvar, M., Alnahhal, W., Mahdi, E., & Onat, N. C. (2021). Green concrete for a circular economy: A review on sustainability, durability, and structural properties. Materials, 14(2), 351. [CrossRef]
  • 12. Parashar, A. K., Sharma, P., & Sharma, N. (2022). Effect on the strength of GGBS and fly ash based geopolymer concrete. Materials Today: Proceedings, 62, 4130-4133. [CrossRef]
  • 13. Liu, Z., Takasu, K., Koyamada, H., & Suyama, H. (2022). A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS. Construction and Building Materials, 316, 125776. [CrossRef]
  • 14. Panda, R., & Sahoo, T. K. (2021). Effect of replacement of GGBS and fly ash with cement in concrete. In Lecture Notes in Civil Engineering, 75, 811-818. Springer. [CrossRef]
  • 15. Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties-A review. Construction and Building Materials, 105, 423-434. [CrossRef]
  • 16. Kumar, V. R. P., Gunasekaran, K., & Shyamala, T. (2019). Characterization study on coconut shell concrete with partial replacement of cement by GGBS. Journal of Building Engineering, 26, 100830. [CrossRef]
  • 17. Chandrashekar, V., PS, T., Madhu, K. S., & KB, D. T. P. (2018). Effect on the engineering properties of pervious concrete by partial replacement of cement with GGBS. GRD Journal of Engineering, 3, 1-7. [CrossRef]
  • 18. Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505-514. [CrossRef]
  • 19. Hussain, F., Kaur, I., & Hussain, A. (2020). Reviewing the influence of GGBFS on concrete properties. Materials Today: Proceedings, 32, 997-1004. [CrossRef]
  • 20. Dixit, A., & Hooda, Y. (2019). Experimental evaluation on compressive and tensile behavior of concrete utilizing GGBS, fly ash, and recycled aggregates. International Journal of Engineering and Advanced Technology, 8(5), 2249-8958.
  • 21. Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research, 30(7), 1031-1036. [CrossRef]
  • 22. Sangeetha, S. P., & Joanna, P. S. (2014). Flexural behaviour of reinforced concrete beams with partial replacement of GGBS. American Journal of Engineering Research, 3(1), 119-127.
  • 23. Khatib, J. M., & Hibbert, J. J. (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and Building Materials, 19(6), 460-472. [CrossRef]
  • 24. Hawileh, R. A., Abdalla, J. A., Fardmanesh, F., Shahsana, P., & Khalili, A. (2017). Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement. Archives of Civil and Mechanical Engineering, 17, 511-519. [CrossRef]
  • 25. Hawileh, R. A., Badrawi, H. A., Makahleh, H. Y., Karzad, A. S., & Abdalla, J. A. (2022). Behavior of reinforced concrete beams cast with a proposed geopolymer concrete (GPC) mix. International Journal of Applied Science and Engineering, 19(2), 1-11. [CrossRef]
  • 26. Bai, X., Zhou, H., Bian, X., Chen, X., & Ren, C. (2024). Compressive strength, permeability, and abrasion resistance of pervious concrete incorporating recycled aggregate. Sustainability, 16(10), 4063. [CrossRef]
  • 27. Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8, 157-164. [CrossRef]
  • 28. Zhang, Z., & Li, H. (2024). Flexural fatigue behavior of prestressed high-performance concrete bridges with double mineral fine powder admixture: An experimental study. Applied Sciences, 14(17), 7511. [CrossRef]
  • 29. Gautam, A., & Tung, S. (2024). Advancing sustainability in concrete construction: Enhancing thermal resilience and structural strength with ground granulated blast furnace slag. Asian Journal of Civil Engineering, 25(8), 6119-6129. [CrossRef]
  • 30. Parashar, A. K., Kumar, A., Singh, P., & Gupta, N. (2024). Study on the mechanical properties of GGBS-based geopolymer concrete with steel fiber by cluster and regression analysis. Asian Journal of Civil Engineering, 25(3), 2679-2686. [CrossRef]
  • 31. Oti, J., Adeleke, B. O., Mudiyanselage, P. R., & Kinutahia, J. (2024). A comprehensive performance evaluation of GGBS-based geopolymer concrete activated by a rice husk ash-synthesised sodium silicate solution and sodium hydroxide. Recycling, 9(2), 23. [CrossRef]
  • 32. Thakur, G., Singh, Y., Singh, R., Prakash, C., Saxena, K. K., Pramanik, A., … & Subramaniam, S. (2022). Development of GGBS-based geopolymer concrete incorporated with polypropylene fibers as sustainable materials. Sustainability, 14(17), 10639. [CrossRef]
  • 33. Kanagaraj, B., Anand, N., Alengaram, U. J., & Raj, R. S. (2023). Engineering properties, sustainability performance, and life cycle assessment of high-strength self-compacting geopolymer concrete composites. Construction and Building Materials, 388, 131613. [CrossRef]
  • 34. Deepa, K., Murugesan, P., Valliappan, V., & Choudary, S. (2023). Experimental research on pervious concrete performance with partial replacement of foundry sand nano and GGBS. Materials Today: Proceedings, 103, 534-540. [CrossRef]
  • 35. Mironovs, V., Broņka, J., Korjakins, A., & Kazjonovs, J. (2011). Possibilities of application of iron-containing waste materials in manufacturing of heavy concrete. Civil Engineering ’11 - 3rd International Scientific Conference, Proceedings, 3, 14-19.
  • 36. Olutoge, F., Onugba, M., & Ocholi, A. (2016). Strength properties of concrete produced with iron filings as sand replacement. British Journal of Applied Science and Technology, 18(3), 1-6. [CrossRef]
  • 37. Ekop, I. E., Okeke, C. J., & Inyang, E. V. (2022). Comparative study on recycled iron filings and glass particles as a potential fine aggregate in concrete. Resources, Conservation & Recycling Advances, 15, 200093. [CrossRef]
  • 38. Helmand, P., & Saini, S. (2019). Mechanical properties of concrete in presence of iron filings as complete replacement of fine aggregates. Materials Today: Proceedings, 15, 536-545. [CrossRef]
  • 39. American Concrete Institute. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. ACI 318-08.
There are 39 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Sawsan Akram Hassan 0000-0001-8405-6586

Saif Altai 0000-0003-0122-0999

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date October 3, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2024

Cite

APA Hassan, S. A., & Altai, S. (2024). Flexural behavior of sustainable high-strength RC beams with GGBS and iron filings incorporation. Journal of Sustainable Construction Materials and Technologies, 9(4), 315-326. https://doi.org/10.47481/jscmt.1608347

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr