Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 3, 268 - 279, 30.09.2024
https://doi.org/10.47481/jscmt.1536080

Abstract

References

  • 1. Langer, W. H. (2002). Managing and protecting aggregate resources. US Geological Survey. [CrossRef]
  • 2. Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater, 165(1-3), 300–305. [CrossRef]
  • 3. Motz, H., & Geiseler, J. (2001). Products of steel slag an opportunity to save natural resources. Waste Manag, 21(3), 285–293. [CrossRef]
  • 4. Sorlini, S., Sanzeni, A., & Rondi, L. (2012). Reuse of steel slag in bituminous paving mixtures. J Hazard Mater, 209, 84–91. [CrossRef]
  • 5. Kim, K., Jo, S. H., Kim, N., & Kim, H. (2018). Characteristics of hot mix asphalt containing steel slag aggregate according to temperature and void percentage. Constr Build Mater, 188, 1128–1136. [CrossRef]
  • 6. Kehagia, F. (2009). Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates. Waste Manag Res, 27(3), 288–294. [CrossRef]
  • 7. Asi, I. M. (2007). Evaluating skid resistance of different asphalt concrete mixes. Build Environ, 42(1), 325–329. [CrossRef]
  • 8. Oluwasola, E. A., Hainin, M. R., & Aziz, M. M. A. (2015). Evaluation of rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace steel slag and copper mine tailing. Indian J Eng Mater Sci, 22(5), 550–558.
  • 9. Díaz-Piloneta, M., Terrados-Cristos, M., Álvarez-Cabal, J. V., & Vergara-González, E. (2021). Comprehensive analysis of steel slag as aggregate for road construction: Experimental testing and environmental impact assessment. Materials, 14(13), 3587. [CrossRef]
  • 10. Baidoo, M. F. (2022). Characterization of Palm Kernel Shell Ash (PKSA) generated from a furnace at Juaben Oil Mills. KEEP Bull, 3(2), 2223.
  • 11. Osei, D. Y., & Jackson, E. N. (2012). Experimental study on palm kernel shells as coarse aggregates in concrete. Int J Sci Eng Res, 3(8), 1–6.
  • 12. Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: A comprehensive review. Environ Sci Pollut Res, 26, 14849–14866. [CrossRef]
  • 13. Bonsu, B. O., Takase, M., & Mantey, J. (2020). Preparation of charcoal briquette from palm kernel shells: A case study in Ghana. Heliyon, 6(10), E05266. [CrossRef]
  • 14. Nyamful, A., Nyogbe, E. K., Mohammed, L., Zainudeen, M. N., Darkwa, S. A., Phiri, I., Mohammed, M., & Ko, J. M. (2020). Processing and characterizing activated carbon from coconut shell and palm kernel shell waste by H3PO4 activation. Ghana J Sci, 61(2), 91–104. [CrossRef]
  • 15. Usman, K. R., Hainin, M. R., Satar, M. K. I. M., Warid, M. N. M., Kamarudin, S. N. N., & Abdulrahman, S. (2021). Palm oil fuel ash application in cold mix dense-graded bituminous mixture. Constr Build Mater, 287, 123033. [CrossRef]
  • 16. Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: A pilot study. Cleaner Mater, 8, 100187. [CrossRef]
  • 17. Bujanga, M., Bakiea, N. A., Bujanga, U. H., Kiana, L. S., Juslia, E. A., & Azahara, W. N. A. W. (2023). Characteristics of oil palm fruit ash as binder in asphaltic concrete. J Kejuruteraan, 35(4), 913–921. [CrossRef]
  • 18. Olayemi, O. R., & Olaiya, R. A. (2023). Optimization of palm oil fiber ash in asphalt mixture. Int J Res Publ Rev, 4(4), 5262–5267.
  • 19. Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: a pilot study. Cleaner Mater, 8, 100187. [CrossRef]
  • 20. Maleka, A. M., Alkali, I. A., & Jaya, R. P. (2014). The indirect tensile strength of palm oil fuel ash (POFA) modified asphaltic concrete. Appl Mech Mater, 587–589, 1270–1275. [CrossRef]
  • 21. Ahmad, J. B., Yunus, K. N. B. M., Kamaruddin, N. H. B. M., & Zainorabidin, A. B. (2012). The practical use of palm oil fuel ash as a filler in asphalt pavement. In Proceedings of International Conference of Civil and Environmental Engineering for Sustainability (IconCEES), Johor Bahru, Malaysia, 3–5.
  • 22. Borhan, M. N., Ismail, A., & Rahmat, R. A. (2010). Evaluation of palm oil fuel ash (POFA) on asphalt mixtures. Aust J Basic Appl Sci, 4(10), 5456–5463.
  • 23. Babalghaith, A. M., Koting, S., Sulong, N. H. R., Karim, M. R., Mohammed, S. A., & Ibrahim, M. R. (2020). Effect of palm oil clinker (POC) aggregate on the mechanical properties of stone mastic asphalt (SMA) mixtures. Sustainability, 12(7), 2716. [CrossRef]
  • 24. Khajuria, A., Yamamoto, Y., & Morioka, T. (2010). Estimation of municipal solid waste generation and landfill area in Asian developing countries. J Environ Biol, 31(5), 649–654.
  • 25. Han, X., Hu, C., & Lin, L. (2020). A study on the impact of China's urbanization on the quantity of municipal solid waste produced. Waste Manag Res, 38(2), 184–192. [CrossRef]
  • 26. Juckes, L. M. (2003). The volume stability of modern steelmaking slags. Miner Process Extr Metall, 112(3), 177–197. [CrossRef]
  • 27. American Society for Testing and Materials. (2006). Standard test method for penetration of bituminous materials (D5). ASTM International.
  • 28. American Society for Testing and Materials. (2018). Standard test method for flash and fire points by Cleveland open cup tester (D92). ASTM International.
  • 29. American Society for Testing and Materials. (2009). Standard specification for viscosity-graded asphalt cement for use in pavement construction (D3381). ASTM International.
  • 30. American Society for Testing and Materials. (2006). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer (D4402). ASTM International.
  • 31. American Society for Testing and Materials. (2018). Standard test method for density of semi-solid asphalt binder (Pycnometer method) (D70). ASTM International.
  • 32. Ministry of Roads and Highways (MRH). (2007). Ministry of Transportation Standard Specification for Road and Bridge Works. Accra.
  • 33. American Society for Testing and Materials. (1999). Standard practice for preparation of bituminous specimens using Marshall apparatus (D6926). ASTM International.
  • 34. American Association of State Highway and Transportation Officials. (2015). Standard practice for mixture conditioning of hot mix asphalt (R30). AASHTO.
  • 35. Asphalt Institute. (2009). Asphalt mix design methods (MS-2 7th Edition). ASTM International.
  • 36. Texas Department of Transportation. (2014). Test procedure for Cantabro abrasion loss (Tex-245-F). https://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/200-F_series/archives/245-1104.pdf
  • 37. Doyle, J., & Howard, I. (2016). Characterization of dense-graded asphalt with the Cantabro test. J Test Eval, 44(1), 77–88. [CrossRef]
  • 38. Doyle, J. D., & Howard, I. L. (2011). Evaluation of the Cantabro durability test for dense graded asphalt. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 4563–4572). [CrossRef]
  • 39. Cox, B. C., Smith, B. T., Howard, I. L., & James, R. S. (2017). State of knowledge for Cantabro testing of dense graded asphalt. J Mater Civ Eng, 29(10), 04017174. [CrossRef]
  • 40. American Association of State Highway and Transportation Officials. (2014). Resistance of compacted asphalt mixtures to moisture-induced damage (T283). https://www.intertekinform.com/en-us/standards/aashto-t-283-2014-1349_saig_aashto_aashto_3417/
  • 41. American Society for Testing and Materials. (2019). Standard test method for determination of cracking tolerance index of asphalt mixture using the indirect tensile cracking test at intermediate temperature (D8225). https://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_987E.pdf
  • 42. Texas Transportation Researcher (TTR). (2021). IDEAL-CT – Simple, reliable, efficient, repeatable, cost effective. Tex Transp Res, 57(1), 1011.
  • 43. Chowdhury, P. S., Noojilla, S. L. A., & Reddy, M. A. (2022). Evaluation of fatigue characteristics of asphalt mixtures using Cracking Tolerance index (CTIndex). Constr Build Mater, 342, 128030. [CrossRef]
  • 44. Newcomb, D., & Zhou, F. (2018). Balanced design of asphalt mixtures (No. MN/RC 2018-22). Minnesota Department of Transportation.
  • 45. Yan, C., Zhang, Y., & Bahia, H. U. (2020). Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures. Constr Build Mater, 252, 119060. [CrossRef]
  • 46. American Society for Testing and Materials. (2022). Standard test method for determination of rutting tolerance index of asphalt mixture using the Ideal Rutting Test (D8360). https://cdn.standards.iteh.ai/samples/113516/4102b8bc605447fba3cd471927c7cc16/ASTM-D8360-22.pdf
  • 47. Zhou, F., Crockford, B., Zhang, J., Hu, S., Epps, J., & Sun, L. (2019). Development and validation of an Ideal Shear Rutting Test for asphalt mix design and QC/QA. J Assoc Asph Pav Technol, 88, 719750.
  • 48. Zhou, F., Hu, S., & Newcomb, D. (2020). Development of a performance-related framework for production quality control with Ideal Cracking and Rutting Tests. Constr Build Mater, 261(3), 120549. [CrossRef]
  • 49. Zhou, F., Steger, R., & Mogawer, W. (2021). Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Constr Build Mater, 287, 123020. [CrossRef]
  • 50. Zhang, W., Khan, A., Huyan, J., Zhong, J., Peng, T., & Cheng, H. (2021). Predicting Marshall parameters of flexible pavement using support vector machine and genetic programming. Constr Build Mater, 306, 124924. [CrossRef]
  • 51. Liu, C., & Wu, X. W. (2011). Factors influencing municipal solid waste generation in China: A multiple statistical analysis study. Waste Manag Res, 29(4), 371–378. [CrossRef]
  • 52. American Society for Testing and Materials. (2003). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine (C131). https://cdn.standards.iteh.ai/samples/105858/245bf79852bf4d3aaadf0404f8524423/ASTM-C131-C131M-20.pdf
  • 53. British Standard Institution (BS 812). (1975). Testing aggregates. https://storethinghiem.vn/uploads/files/BS%20812-3-75.pdf
  • 54. American Society for Testing and Materials. (2010). Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate (D4791). https://cdn.standards.iteh.ai/samples/75008/534478c0f43f40959d8d06e02751a64a/ASTM-D4791-10.pdf
  • 55. American Society for Testing and Materials. (2017). Standard test method for determining the percentage of fractured particles in coarse aggregate (D5821). https://www.nicet.org/nicetorg/assets/file/public/performance_examination_checklists/aggregate/astm_d5821-13-17.pdf
  • 56. American Society for Testing and Materials. (2017). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading) (C1252). https://cdn.standards.iteh.ai/samples/97023/94801c3943a94944acaf4d1717025704/ASTM-C1252-17.pdf
  • 57. American Association of State Highway and Transportation Officials. (2022). Standard method of test for determining the plastic limit and plasticity index of soils (T90). https://www.studocu.com/vn/document/dai-hoc-nha-trang/dong-luc-hoc-may-va-ket-cau-co-khi/aashto-t-90-22-determining-the-plastic-limit-and-plasticity-index-of-soils/84524957
  • 58. American Society for Testing and Materials. (2001). Standard test method for specific gravity and water absorption of coarse aggregate (C127). https://cdn.standards.iteh.ai/samples/16248/d3b8da9eacbe4132bbfd396713e84689/ASTM-C127-88-2001-.pdf
  • 59. American Society for Testing and Materials. (1999). Test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate (C88). https://cdn.standards.iteh.ai/samples/1524/9c76b77219974fdc857031d16ec270d1/ASTM-C88-99a.pdf
  • 60. The Constructor. (2017). Aggregate tests. https://theconstructor.org/practical-guide/aggregate-crushing-value/2245/ (accessed 19-06-2023).
  • 61. American Association of State Highway and Transportation Officials. (2012). Standard specification for stone matrix asphalt (M325). https://www.scribd.com/document/410673640/AASHTO-M-325-08-2012-Stone-Matrix-Asphalt-SMA-pdf
  • 62. NAPA. (2002). Designing and constructing SMA mixtures: State-of-the-practice (Quality Improvement Series 122). National Asphalt Pavement Association.
  • 63. Murana, A. A., Olowosulu, A. T., & Ahiwa, S. (2014). Performance of metakaolin as partial replacement of cement in hot mix asphalt. Niger J Technol, 33(3), 387–393. [CrossRef]
  • 64. Grubeša, I. V., Barišić, I., Fucic, A., & Bansode, S. S. (2016). Characteristics and uses of steel slag in building construction. Woodhead Publishing.
  • 65. Amelian, S., Manian, M., Abtahi, S. M., & Goli, A. (2018). Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J Clean Prod, 176, 329–337. [CrossRef]
  • 66. Juckes, L. M. (2003). The volume stability of modern steelmaking slags. Miner Process Extr Metall, 112(3), 177–197. [CrossRef]
  • 67. Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ, 42(7), 2580–2585. [CrossRef]
  • 68. Zaidi, S. B. A. (2018). The influence of hydrated lime on moisture susceptibility of asphalt mixtures (Doctoral dissertation, University of Nottingham).
  • 69. Al-Marafi, M. N. I. (2021). Effects of hydrated lime on moisture susceptibility of asphalt concrete. Adv Sci Technol Res J, 15(2), 1317. [CrossRef]
  • 70. Omar, H. A., Yusoff, N. I. M., Mubaraki, M., & Ceylan, H. (2020). Effects of moisture damage on asphalt mixtures. J Traffic Transp Eng, 7(5), 600–628. [CrossRef]
  • 71. McBain, J. W., & Hopkins, D. G. (2002). On adhesives and adhesive action. J Phys Chem, 29(2), 188–204. [CrossRef]
  • 72. Kiggundu, B. M., & Roberts, F. L. (1988). Stripping in HMA mixtures: State-of-the-art and critical review of test methods. NCAT Report No. 88-2.
  • 73. Shell. (2015). The Shell Bitumen Handbook. ICE Publishing.
  • 74. Nwaobakata, C., & Agunwamba, J. C. (2014). Effect of palm kernel shells ash as filler on the mechanical properties of hot mix asphalt. Arch Appl Sci Res, 6(5), 42–49.
  • 75. Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concrete with electric arc furnace slag. Constr Build Mater, 25(8), 3458–3468. [CrossRef]
  • 76. Xie, J., Chen, J., Wu, S., Lin, J., & Wei, W. (2013). Performance characteristics of asphalt mixture with basic oxygen furnace slag. Constr Build Mater, 38, 796–803. [CrossRef]
  • 77. Kavussi, A., & Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long-term aging. Constr Build Mater, 72, 158–166. [CrossRef]
  • 78. Chen, Z., Wu, S., Xiao, Y., Zeng, W., Yi, M., & Wan, J. (2016). Effect of hydration and silicone resin on basic oxygen furnace slag and its asphalt mixture. J Clean Prod, 112, 392–400. [CrossRef]
  • 79. Yildirim, I. Z., & Prezzi, M. (2015). Geotechnical properties of fresh and aged basic oxygen furnace steel slag. J Mater Civ Eng, 27(12), 04015046. [CrossRef]
  • 80. Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Mater Pavement Des, 18(sup4), 405–427. [CrossRef]
  • 81. American Society for Testing and Materials. (2017). Standard practice for open-graded friction course (OGFC) mix design (AD7064). ASTM International.
  • 82. Arrieta, V. S., & Maquilón, J. E. C. (2014). Resistance to degradation or cohesion loss in Cantabro test on specimens of porous asphalt friction courses. Procedia Soc Behav Sci, 162, 290–299. [CrossRef]

Replacement of conventional aggregates and fillers with steel slag and palm kernel shell ash in dense-graded asphalt mixtures

Year 2024, Volume: 9 Issue: 3, 268 - 279, 30.09.2024
https://doi.org/10.47481/jscmt.1536080

Abstract

Large quantities of steel slag and palm kernel shell ash (PKSA) – waste products from steel production and palm oil milling, respectively – are generated annually in several
countries, and their disposal is challenging. Meanwhile, the over-reliance on conventional rock aggregates for asphalt mixture production poses increasing sustainability challenges. This study investigated the potential of entirely replacing granite aggregates with steel slag and PKSA in a dense-graded asphalt mixture. Two sets of asphalt mixtures were prepared; the control mixture contained crushed granite aggregate and hydrated lime, while the other set incorporated steel slag as coarse aggregate and PKSA as fine aggregate and filler. Both mixture types utilized AC-30 viscosity-graded asphalt binder. The properties of the waste materials met the quality standards required for aggregates in asphalt mixture production. Both mixture types were designed according to the Marshall design procedure and were evaluated for durability (Cantabro abrasion loss), fatigue cracking Resistance, rutting Resistance, and moisture damage susceptibility. The Cantabro abrasion loss test indicated that the waste-based mixture was 3% less durable than the control. However, the cracking Resistance of the waste-based mixture was approximately twice
that of the control. Even though the rapid rutting test indicated that the control mixture was slightly superior in rutting Resistance, the Marshall quotient suggested otherwise. Both mixture types exhibited similar moisture damage resistance. Overall, the steel slag and PKSA samples have shown high potential to replace virgin granite aggregates and lime in asphalt mixtures fully and are, thus, recommended for field performance evaluation and possible adoption.

Supporting Institution

Regional Transport Research and Education Centre Kumasi (TRECK) of the Department of Civil Engineering at the Kwame Nkru- mah University of Science and Technology (KNUST) in Kumasi, Ghana

References

  • 1. Langer, W. H. (2002). Managing and protecting aggregate resources. US Geological Survey. [CrossRef]
  • 2. Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater, 165(1-3), 300–305. [CrossRef]
  • 3. Motz, H., & Geiseler, J. (2001). Products of steel slag an opportunity to save natural resources. Waste Manag, 21(3), 285–293. [CrossRef]
  • 4. Sorlini, S., Sanzeni, A., & Rondi, L. (2012). Reuse of steel slag in bituminous paving mixtures. J Hazard Mater, 209, 84–91. [CrossRef]
  • 5. Kim, K., Jo, S. H., Kim, N., & Kim, H. (2018). Characteristics of hot mix asphalt containing steel slag aggregate according to temperature and void percentage. Constr Build Mater, 188, 1128–1136. [CrossRef]
  • 6. Kehagia, F. (2009). Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates. Waste Manag Res, 27(3), 288–294. [CrossRef]
  • 7. Asi, I. M. (2007). Evaluating skid resistance of different asphalt concrete mixes. Build Environ, 42(1), 325–329. [CrossRef]
  • 8. Oluwasola, E. A., Hainin, M. R., & Aziz, M. M. A. (2015). Evaluation of rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace steel slag and copper mine tailing. Indian J Eng Mater Sci, 22(5), 550–558.
  • 9. Díaz-Piloneta, M., Terrados-Cristos, M., Álvarez-Cabal, J. V., & Vergara-González, E. (2021). Comprehensive analysis of steel slag as aggregate for road construction: Experimental testing and environmental impact assessment. Materials, 14(13), 3587. [CrossRef]
  • 10. Baidoo, M. F. (2022). Characterization of Palm Kernel Shell Ash (PKSA) generated from a furnace at Juaben Oil Mills. KEEP Bull, 3(2), 2223.
  • 11. Osei, D. Y., & Jackson, E. N. (2012). Experimental study on palm kernel shells as coarse aggregates in concrete. Int J Sci Eng Res, 3(8), 1–6.
  • 12. Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: A comprehensive review. Environ Sci Pollut Res, 26, 14849–14866. [CrossRef]
  • 13. Bonsu, B. O., Takase, M., & Mantey, J. (2020). Preparation of charcoal briquette from palm kernel shells: A case study in Ghana. Heliyon, 6(10), E05266. [CrossRef]
  • 14. Nyamful, A., Nyogbe, E. K., Mohammed, L., Zainudeen, M. N., Darkwa, S. A., Phiri, I., Mohammed, M., & Ko, J. M. (2020). Processing and characterizing activated carbon from coconut shell and palm kernel shell waste by H3PO4 activation. Ghana J Sci, 61(2), 91–104. [CrossRef]
  • 15. Usman, K. R., Hainin, M. R., Satar, M. K. I. M., Warid, M. N. M., Kamarudin, S. N. N., & Abdulrahman, S. (2021). Palm oil fuel ash application in cold mix dense-graded bituminous mixture. Constr Build Mater, 287, 123033. [CrossRef]
  • 16. Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: A pilot study. Cleaner Mater, 8, 100187. [CrossRef]
  • 17. Bujanga, M., Bakiea, N. A., Bujanga, U. H., Kiana, L. S., Juslia, E. A., & Azahara, W. N. A. W. (2023). Characteristics of oil palm fruit ash as binder in asphaltic concrete. J Kejuruteraan, 35(4), 913–921. [CrossRef]
  • 18. Olayemi, O. R., & Olaiya, R. A. (2023). Optimization of palm oil fiber ash in asphalt mixture. Int J Res Publ Rev, 4(4), 5262–5267.
  • 19. Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: a pilot study. Cleaner Mater, 8, 100187. [CrossRef]
  • 20. Maleka, A. M., Alkali, I. A., & Jaya, R. P. (2014). The indirect tensile strength of palm oil fuel ash (POFA) modified asphaltic concrete. Appl Mech Mater, 587–589, 1270–1275. [CrossRef]
  • 21. Ahmad, J. B., Yunus, K. N. B. M., Kamaruddin, N. H. B. M., & Zainorabidin, A. B. (2012). The practical use of palm oil fuel ash as a filler in asphalt pavement. In Proceedings of International Conference of Civil and Environmental Engineering for Sustainability (IconCEES), Johor Bahru, Malaysia, 3–5.
  • 22. Borhan, M. N., Ismail, A., & Rahmat, R. A. (2010). Evaluation of palm oil fuel ash (POFA) on asphalt mixtures. Aust J Basic Appl Sci, 4(10), 5456–5463.
  • 23. Babalghaith, A. M., Koting, S., Sulong, N. H. R., Karim, M. R., Mohammed, S. A., & Ibrahim, M. R. (2020). Effect of palm oil clinker (POC) aggregate on the mechanical properties of stone mastic asphalt (SMA) mixtures. Sustainability, 12(7), 2716. [CrossRef]
  • 24. Khajuria, A., Yamamoto, Y., & Morioka, T. (2010). Estimation of municipal solid waste generation and landfill area in Asian developing countries. J Environ Biol, 31(5), 649–654.
  • 25. Han, X., Hu, C., & Lin, L. (2020). A study on the impact of China's urbanization on the quantity of municipal solid waste produced. Waste Manag Res, 38(2), 184–192. [CrossRef]
  • 26. Juckes, L. M. (2003). The volume stability of modern steelmaking slags. Miner Process Extr Metall, 112(3), 177–197. [CrossRef]
  • 27. American Society for Testing and Materials. (2006). Standard test method for penetration of bituminous materials (D5). ASTM International.
  • 28. American Society for Testing and Materials. (2018). Standard test method for flash and fire points by Cleveland open cup tester (D92). ASTM International.
  • 29. American Society for Testing and Materials. (2009). Standard specification for viscosity-graded asphalt cement for use in pavement construction (D3381). ASTM International.
  • 30. American Society for Testing and Materials. (2006). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer (D4402). ASTM International.
  • 31. American Society for Testing and Materials. (2018). Standard test method for density of semi-solid asphalt binder (Pycnometer method) (D70). ASTM International.
  • 32. Ministry of Roads and Highways (MRH). (2007). Ministry of Transportation Standard Specification for Road and Bridge Works. Accra.
  • 33. American Society for Testing and Materials. (1999). Standard practice for preparation of bituminous specimens using Marshall apparatus (D6926). ASTM International.
  • 34. American Association of State Highway and Transportation Officials. (2015). Standard practice for mixture conditioning of hot mix asphalt (R30). AASHTO.
  • 35. Asphalt Institute. (2009). Asphalt mix design methods (MS-2 7th Edition). ASTM International.
  • 36. Texas Department of Transportation. (2014). Test procedure for Cantabro abrasion loss (Tex-245-F). https://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/200-F_series/archives/245-1104.pdf
  • 37. Doyle, J., & Howard, I. (2016). Characterization of dense-graded asphalt with the Cantabro test. J Test Eval, 44(1), 77–88. [CrossRef]
  • 38. Doyle, J. D., & Howard, I. L. (2011). Evaluation of the Cantabro durability test for dense graded asphalt. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 4563–4572). [CrossRef]
  • 39. Cox, B. C., Smith, B. T., Howard, I. L., & James, R. S. (2017). State of knowledge for Cantabro testing of dense graded asphalt. J Mater Civ Eng, 29(10), 04017174. [CrossRef]
  • 40. American Association of State Highway and Transportation Officials. (2014). Resistance of compacted asphalt mixtures to moisture-induced damage (T283). https://www.intertekinform.com/en-us/standards/aashto-t-283-2014-1349_saig_aashto_aashto_3417/
  • 41. American Society for Testing and Materials. (2019). Standard test method for determination of cracking tolerance index of asphalt mixture using the indirect tensile cracking test at intermediate temperature (D8225). https://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_987E.pdf
  • 42. Texas Transportation Researcher (TTR). (2021). IDEAL-CT – Simple, reliable, efficient, repeatable, cost effective. Tex Transp Res, 57(1), 1011.
  • 43. Chowdhury, P. S., Noojilla, S. L. A., & Reddy, M. A. (2022). Evaluation of fatigue characteristics of asphalt mixtures using Cracking Tolerance index (CTIndex). Constr Build Mater, 342, 128030. [CrossRef]
  • 44. Newcomb, D., & Zhou, F. (2018). Balanced design of asphalt mixtures (No. MN/RC 2018-22). Minnesota Department of Transportation.
  • 45. Yan, C., Zhang, Y., & Bahia, H. U. (2020). Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures. Constr Build Mater, 252, 119060. [CrossRef]
  • 46. American Society for Testing and Materials. (2022). Standard test method for determination of rutting tolerance index of asphalt mixture using the Ideal Rutting Test (D8360). https://cdn.standards.iteh.ai/samples/113516/4102b8bc605447fba3cd471927c7cc16/ASTM-D8360-22.pdf
  • 47. Zhou, F., Crockford, B., Zhang, J., Hu, S., Epps, J., & Sun, L. (2019). Development and validation of an Ideal Shear Rutting Test for asphalt mix design and QC/QA. J Assoc Asph Pav Technol, 88, 719750.
  • 48. Zhou, F., Hu, S., & Newcomb, D. (2020). Development of a performance-related framework for production quality control with Ideal Cracking and Rutting Tests. Constr Build Mater, 261(3), 120549. [CrossRef]
  • 49. Zhou, F., Steger, R., & Mogawer, W. (2021). Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Constr Build Mater, 287, 123020. [CrossRef]
  • 50. Zhang, W., Khan, A., Huyan, J., Zhong, J., Peng, T., & Cheng, H. (2021). Predicting Marshall parameters of flexible pavement using support vector machine and genetic programming. Constr Build Mater, 306, 124924. [CrossRef]
  • 51. Liu, C., & Wu, X. W. (2011). Factors influencing municipal solid waste generation in China: A multiple statistical analysis study. Waste Manag Res, 29(4), 371–378. [CrossRef]
  • 52. American Society for Testing and Materials. (2003). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine (C131). https://cdn.standards.iteh.ai/samples/105858/245bf79852bf4d3aaadf0404f8524423/ASTM-C131-C131M-20.pdf
  • 53. British Standard Institution (BS 812). (1975). Testing aggregates. https://storethinghiem.vn/uploads/files/BS%20812-3-75.pdf
  • 54. American Society for Testing and Materials. (2010). Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate (D4791). https://cdn.standards.iteh.ai/samples/75008/534478c0f43f40959d8d06e02751a64a/ASTM-D4791-10.pdf
  • 55. American Society for Testing and Materials. (2017). Standard test method for determining the percentage of fractured particles in coarse aggregate (D5821). https://www.nicet.org/nicetorg/assets/file/public/performance_examination_checklists/aggregate/astm_d5821-13-17.pdf
  • 56. American Society for Testing and Materials. (2017). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading) (C1252). https://cdn.standards.iteh.ai/samples/97023/94801c3943a94944acaf4d1717025704/ASTM-C1252-17.pdf
  • 57. American Association of State Highway and Transportation Officials. (2022). Standard method of test for determining the plastic limit and plasticity index of soils (T90). https://www.studocu.com/vn/document/dai-hoc-nha-trang/dong-luc-hoc-may-va-ket-cau-co-khi/aashto-t-90-22-determining-the-plastic-limit-and-plasticity-index-of-soils/84524957
  • 58. American Society for Testing and Materials. (2001). Standard test method for specific gravity and water absorption of coarse aggregate (C127). https://cdn.standards.iteh.ai/samples/16248/d3b8da9eacbe4132bbfd396713e84689/ASTM-C127-88-2001-.pdf
  • 59. American Society for Testing and Materials. (1999). Test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate (C88). https://cdn.standards.iteh.ai/samples/1524/9c76b77219974fdc857031d16ec270d1/ASTM-C88-99a.pdf
  • 60. The Constructor. (2017). Aggregate tests. https://theconstructor.org/practical-guide/aggregate-crushing-value/2245/ (accessed 19-06-2023).
  • 61. American Association of State Highway and Transportation Officials. (2012). Standard specification for stone matrix asphalt (M325). https://www.scribd.com/document/410673640/AASHTO-M-325-08-2012-Stone-Matrix-Asphalt-SMA-pdf
  • 62. NAPA. (2002). Designing and constructing SMA mixtures: State-of-the-practice (Quality Improvement Series 122). National Asphalt Pavement Association.
  • 63. Murana, A. A., Olowosulu, A. T., & Ahiwa, S. (2014). Performance of metakaolin as partial replacement of cement in hot mix asphalt. Niger J Technol, 33(3), 387–393. [CrossRef]
  • 64. Grubeša, I. V., Barišić, I., Fucic, A., & Bansode, S. S. (2016). Characteristics and uses of steel slag in building construction. Woodhead Publishing.
  • 65. Amelian, S., Manian, M., Abtahi, S. M., & Goli, A. (2018). Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J Clean Prod, 176, 329–337. [CrossRef]
  • 66. Juckes, L. M. (2003). The volume stability of modern steelmaking slags. Miner Process Extr Metall, 112(3), 177–197. [CrossRef]
  • 67. Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ, 42(7), 2580–2585. [CrossRef]
  • 68. Zaidi, S. B. A. (2018). The influence of hydrated lime on moisture susceptibility of asphalt mixtures (Doctoral dissertation, University of Nottingham).
  • 69. Al-Marafi, M. N. I. (2021). Effects of hydrated lime on moisture susceptibility of asphalt concrete. Adv Sci Technol Res J, 15(2), 1317. [CrossRef]
  • 70. Omar, H. A., Yusoff, N. I. M., Mubaraki, M., & Ceylan, H. (2020). Effects of moisture damage on asphalt mixtures. J Traffic Transp Eng, 7(5), 600–628. [CrossRef]
  • 71. McBain, J. W., & Hopkins, D. G. (2002). On adhesives and adhesive action. J Phys Chem, 29(2), 188–204. [CrossRef]
  • 72. Kiggundu, B. M., & Roberts, F. L. (1988). Stripping in HMA mixtures: State-of-the-art and critical review of test methods. NCAT Report No. 88-2.
  • 73. Shell. (2015). The Shell Bitumen Handbook. ICE Publishing.
  • 74. Nwaobakata, C., & Agunwamba, J. C. (2014). Effect of palm kernel shells ash as filler on the mechanical properties of hot mix asphalt. Arch Appl Sci Res, 6(5), 42–49.
  • 75. Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concrete with electric arc furnace slag. Constr Build Mater, 25(8), 3458–3468. [CrossRef]
  • 76. Xie, J., Chen, J., Wu, S., Lin, J., & Wei, W. (2013). Performance characteristics of asphalt mixture with basic oxygen furnace slag. Constr Build Mater, 38, 796–803. [CrossRef]
  • 77. Kavussi, A., & Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long-term aging. Constr Build Mater, 72, 158–166. [CrossRef]
  • 78. Chen, Z., Wu, S., Xiao, Y., Zeng, W., Yi, M., & Wan, J. (2016). Effect of hydration and silicone resin on basic oxygen furnace slag and its asphalt mixture. J Clean Prod, 112, 392–400. [CrossRef]
  • 79. Yildirim, I. Z., & Prezzi, M. (2015). Geotechnical properties of fresh and aged basic oxygen furnace steel slag. J Mater Civ Eng, 27(12), 04015046. [CrossRef]
  • 80. Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Mater Pavement Des, 18(sup4), 405–427. [CrossRef]
  • 81. American Society for Testing and Materials. (2017). Standard practice for open-graded friction course (OGFC) mix design (AD7064). ASTM International.
  • 82. Arrieta, V. S., & Maquilón, J. E. C. (2014). Resistance to degradation or cohesion loss in Cantabro test on specimens of porous asphalt friction courses. Procedia Soc Behav Sci, 162, 290–299. [CrossRef]
There are 82 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Collins A. Nketiah This is me 0009-0005-3352-2045

Kenneth A. Tutu 0000-0002-7455-997X

Ebenezer D. A. Barnor This is me 0009-0003-1360-4460

David A. Azong-bil This is me 0009-0006-9924-9499

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date March 8, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Nketiah, C. A., Tutu, K. A., Barnor, E. D. A., Azong-bil, D. A. (2024). Replacement of conventional aggregates and fillers with steel slag and palm kernel shell ash in dense-graded asphalt mixtures. Journal of Sustainable Construction Materials and Technologies, 9(3), 268-279. https://doi.org/10.47481/jscmt.1536080

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr