Research Article
BibTex RIS Cite

Kaolinite based risk assessment of traffic-related pollution for selected historical libraries in Istanbul: Insights from urban topsoils studied by DRIFTS

Year 2020, Volume: 2 Issue: 1, 1 - 43, 28.09.2020

Abstract

This study involves mid infrared (MIR) region (400-4000 cm-1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) investigation of urban topsoil samples nearby historical libraries in historic peninsula, Fatih district, Istanbul, Turkey. With DRIFTS, we aimed to detect traffic-driven pollution around these libraries that contain cultural heritage indoors. DRIFTS is a rapid and versatile technique that can be both used in laboratory and in situ soil analysis and it is very sensitive to both organic and mineral soil composition. IR spectral discrimination of topsoil samples collected nearby libraries were rapidly and accurately determined. Another purpose of this work was to investigate the possible sources of pollutants on urban topsoils nearby these historical libraries by their soil mineralogy, mainly based on kaolinite, total recoverable hydrocarbon (TRH), disorder index (DI) and sulfur dioxide (SO2), as an anthropogenic source, using DRIFTS. To the best of our knowledge, we report the first DRIFTS determination of the various traffic-driven pollution sources absorbed by urban topsoils nearby historical libraries.

References

  • Bashagaluke, J., Nshobole, N., Fataki, D., Mochoge, B., Mugwe, J., and Walangululu, J.W., 2015. Application of infrared technique in soil properties’ characterization in South Kivu province of DR Congo. African Journal of Food Science and Technology 6 (2), 58-67.
  • Bellamy, L.J., 1975. The Infra-red spectra of complex molecules; Chapman and Hall: London, p 433.
  • Billes, F., Pataki, H., Unsalan, O., Mikosch, H., Vajna, B., Marosi, G., 2012. Solvent effect on the vibrational spectra of Carvedilol. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 95, 148-164.
  • Bishop, J.L., Koeberl, C., Kralik, C., Fröschl, H., Englert, P.A., Andersen, D.W., Pieters, C. M., Wharton, R.A., 1996. Geochim. Cosmochim. Acta. 60 (5), 765-785.
  • Blanch, A.J., Quinton, J.S., Lenehan, C.E., Pring, A., 2008. The crystal chemistry of Al-bearing goethites: an infrared spectroscopic study. Mineral. Mag. 72, 1043–1056.
  • Calderon, F.J., Mikha, M.M., Vigil, M.F., Nielsen, D.C., Benjamin, J.G., and Reeves, J.B., 2011. Diffuse-Reflectance Mid-infrared spectral properties of soils under alternative crop rotations in a semi-arid climate. Comm. in Soil Sci. and Plant Analysis 42 (17), 2143-2159.
  • Cannane, N. Oumabady Alisa, Rajendran, M. Selvaraju, R., 2013. FT-IR spectral studies on polluted soils from industrial area at Karaikal Puducherry State, South India. Spectrochim. Acta Part A: Mol. and Biomol. Spec., 110, 46-54.
  • Candeias, C., Vicente, E., Tome, M., Rocha, F., Avila, P., Alves, C., 2020. Geochemical, mineralogical and morphological characterisation of road dust and associated health risks. Int. J. Environ. Res. Public Health 17 (5).
  • Capriel, P., 1997. Hydrophobicity of organic matter in arable soils: influence of management. Eur. J. Soil Sci. 48 (3), 457-462.
  • Capriel, P., Beck, T., Borchert, H., Gronholz, J., Zachmann, G., 1995. Hydrophobicity of the Organic-Matter in Arable Soils. Soil Biology & Biochemistry 27 (11), 1453-1458.
  • Cases, J.M., Liétard, O., Yvon, J., Delon, J.F., 1982. Étude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. de Minéralogie 105 (5), 439-455.
  • Delineau, T., Allard, T., Muller, J.-P., Barres, O., Yvon, J., Cases, J.-M., 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays and Clay Minerals 42 (3), 308-320.
  • Dick, D.P., Santos, J.H.Z., Ferranti, E.M., 2003. Chemical characterization and infrared spectroscopy of soil organic matter from two southern Brazilian soils. Revista Brasileira De Ciencia Do Solo 27 (1), 29-39.
  • Downey, G., Briandet, R., Wilson, R.H., Kemsley, E.K., 1997. Near- and mid-infrared spectroscopies in food authentication: Coffee varietal identification. J. of Agricultural and Food Chem. 45 (11), 4357-4361.
  • Ellerbrock, R.H., Gerke, H.H., Bohm, C., 2009. In situ DRIFT characterization of organic matter composition on soil structural surfaces. Soil Science Society of America Journal 73 (2), 531-540.
  • Erdogdu, Y. Dereli, Ö, Sajan, D., Joseph, L., Unsalan, O., Gulluoglu, M.T., 2012. Vibrational (FT-IR and FT-Raman) spectral invetigation of 7-aminoflavone with density functional theoretical simulations. Mol. Sim., 38 (4) 315-325.
  • Forrester, S., Janik, L., McLaughlin, M., 2010. An infrared spectroscopic test for total petroleum hydrocarbon (TPH) contamination in soils, pp. 13-16. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, Wien.
  • Forrester, S.T., Janik, L.J., McLaughlin M.J., Soriano-Disla, J.M., Stewart, R., Dearman, B., 2013. Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Science Society of America Journal 77 (2), 450-460.
  • Gonzalez-Grijalva, B., Meza-Figueroa, D., Romero, F.M., Robles-Morua, A., Meza-Montenegro, M., Garcia-Rico, L., Ochoa-Contreras, R., 2019. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Sci. Total Environ. 657, 1468-1479.
  • Hobley, E., Willgoose, G.R., Frisia, S., Jacobsen, G., 2014. Vertical distribution of charcoal in a sandy soil: evidence from DRIFT spectra and field emission scanning electron microscopy. Eur. J. of Soil Sci. 65 (5), 751-762.
  • Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T.F.A., McBratney, A.B., Pallasser, R., Pozza, L., 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 241-242, 180-209.
  • İslam, N., Rabha, S., Silva, Luis. F. O., Saikia, Binoy, K., 2019. Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health. 41, 2309-2053.
  • Janik, L.J., Merry, R.H., Skjemstad, J.O., 1998. Can mid infrared diffuse reflectance analysis replace soil extractions?. Australian Journal of Experimental Agriculture 38 (7), 681-696.
  • Jiang, H.-H., Cai, L.-M., Wen, H.-H., Hu, G.-C., Chen, L.-G., Luo, J., 2020a. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. of The Total Environ. 701, 134466.
  • Jiang, H.-H., Cai, L.-M., Wen, H.-H., Luo, J., 2020b. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci. Rep. 10 (1), 6460.
  • Kaiser, K., Guggenberger, G., Haumaier, L., Zech, W., 1997. Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur. J. of Soil Sci. 48 (2), 301-310.
  • Kaluderović, Lazar M., Tomić, Zorica P., Ašanin, Darko P., Đurović-Pejčev, Rada D., Kresović, Branka J., 2018. Examination of the influence of phenyltrimethylammonium chloride (PTMA) concentration on acetochlor adsorption by modified montmorillonite. J. of Environ. Sci. and Health, Part B. 53 (8), 503-509.
  • Kemsley, E.K., Holland, J.K., Defernez, M., Wilson, R.H., 1996. Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. of Agricultural and Food Chemistry 44 (12), 3864-3870.
  • Kim, S.-O., Kim, J.-J., Yun, S.-T., Kim, K.-W., 2003. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical fields. Water, Air, and Soil Pollution 150 (1), 135-162.
  • Koretsky, Carla M., Sverjensky, Dimitri A., Salisbury John W., D’Aria, Dana M., 1997. Detection of surface hydroxyl species on quartz, γ-alumina, and feldspars using diffuse reflectance infrared spectroscopy. Geochim. et Cosmochim. Acta, 61 (11), 2193-2210.
  • Kubelka, P., Munk, F., 1931. Ein beitrag zur optik der farbanstriche. Z. Techn. Phys. 12, 593-601.
  • Kuzucuoğlu, A., 2017. Preventive conservation in cultural heritage case study: MEMORI survey, Journal of Art, Istanbul University, https://dergipark.org.tr/tr/pub/iuarts/issue/47768/603431
  • Kuzucuoglu, A.H., Kiraz, N.M., Unsalan, O., Taşdemir, İ., 2015. A documentation proposal for manuscripts in libraries A case study: İstanbul University Faculty of Letters Rare Books Library. Bilgi Dünyası 16 (1), 141-159.
  • Leue, M., Gerke, H.H., Ellerbrock, R.H., 2013. Millimetre-scale distribution of organic matter composition at intact biopore and crack surfaces. Eur. J. of Soil Sci. 64 (6), 757-769.
  • Machovic, V., Novak, F., 1998. Diffuse reflectance infrared spectroscopy of soil bitumens from Sumava region. Chemicke Listy 92 (2), 151-156.
  • Margenot, A.J., Calderon, F.J., Magrini, K.A., Evans, R.J., 2017. Application of DRIFTS, C-13 NMR, and py-MBMS to Characterize the effects of soil science oxidation assays on soil organic matter composition in a mollic xerofluvent. Appl. Spec. 71 (7), 1506-1518.
  • Menges, F., 2020. Spectragryph - optical spectroscopy software, Version 1.2.14, 2020, http://www.effemm2.de/spectragryph/.
  • Messerschmidt, R.G., 1985. Complete elimination of specular reflectance in Infrared diffuse reflectance measurements. Appl. Spec. 39 (4), 737-739.
  • Mohsenipour, M., Shahid, S., Ebrahimi, K., 2015. Nitrate adsorption on clay kaolin: Batch Tests. J. of Chemistry 2015, 397069.
  • Montecchio, D., Francioso, O., Carletti, P., Pizzeghello, D., Chersich, S., Previtali, F., Nardi, S., 2006. Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. J. of Thermal Analysis and Calorimetry 83 (2), 393-399.
  • Muller, J.P., Ildefonse, P., Calas, G., 1990. Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the nopal uranium deposit, Chihuahua, Mexico. Clays and Clay Minerals 38 (6), 600-608.
  • Muller, J.P., Bocquier, G., 1987. Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon, in: Schulz, L.G., van Olphen H., Mumpton, F.A. Eds.), Proceedings of the International Clay Conference, Bloomington, Indiana, pp. 186-194.
  • Ng, W., P. Malone, B., Minasny, B., 2017. Rapid assessment of petroleum-contaminated soils with infrared spectroscopy. Geoderma 289, 150-160.
  • Nguyen, T.T., Janik, L.J., Raupach, M., 1991. Diffuse reflectance infrared Fourier-Transform (Drift) spectroscopy in soil studies. Australian J. of Soil Res. 29 (1), 49-67.
  • Niemeyer, J., Chen, Y., Bollag, J.M., 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-Transform infrared-spectroscopy. Soil Science Society of America Journal 56 (1), 135-140.
  • Parikh, Sanjai J., Goyne, Keith W., Margenot, Andrew J., Mukome, Fungai N. D., Calderón, Francisco J., 2014. Soil chemical insights provided through vibrational spectroscopy. Publications from USDA-ARS / UNL Faculty. Paper 1471.
  • Pieters, C.M., Englert, P.A.J., 1993. Eds. Remote geochemical analysis: Elemental and mineralogical composition; Cambridge University Press: Cambridge, p 594.
  • Reeves, J.B., 2012. Mid-Infrared spectroscopy of biochars and spectral similarities to coal and kerogens: What are the implications? Appl. Spect. 66 (6), 689-695.
  • Reeves, J., McCarty, G., Mimmo, T., 2002. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ. Pollution 116, S277-S284.
  • Reeves, J.B., McCarty, G.W., Reeves, V.B., 2001. Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J. of Agricultural and Food Chem. 49 (2), 766-772.
  • Reeves, J.B., 2001a. Near- versus mid-infrared diffuse reflectance spectroscopy for determination of minerals in dried poultry manure. Poultry Science 80 (10), 1437-1443.
  • Reeves, J.B., 2001b. Near-infrared diffuse reflectance spectroscopy for the analysis of poultry manures. Journal of Agricultural and Food Chemistry 49 (5), 2193-2197.
  • Reeves, J.B., 1994a. Influence of pH, ionic-strength, and physical state on the near-infrared spectra of model compounds. J. of Aoac International 77 (4), 814-820.
  • Reeves, J.B., 1994b. Solid-state matrix effects on the near-infrared (NIR) spectra of sugars. Abstracts of Papers of the American Chemical Society 208, 4-Carb.
  • Russell, J.D., 1987. Infrared methods, a handbook of determinative methods in clay mineralogy, edited by Wilson. Chapman and Hall. New York., pp. 133-173. Blackie and Son, London.
  • Schwertmann, U., Taylor, R.M., 1989. Iron oxides. In: Minerals in Soil Environments (eds Dixon, J.B. and Weed, S.B.), pp. 379-438. Soil Science Society of America, Madison, WI.
  • Soda, R., 1961. lnfrared absorption spectra of quartz and some other silica modifications. Bull. of the Chem. Soc. of Japan 34 (10), 1491-1495.
  • The MEMORI project., 2010. Measurement, Effect assessment and Mitigation of Pollutant Impact on Movable Cultural Assets. Innovative Research for Market Transfer", is implemented within the EU 7th Framework Programme. http://www.memori.fraunhofer.de/
  • Unsalan, O., Kuzucuoglu, A.H., Cakir, C., Kaygisiz, E., 2017. One pilot application of mobile Raman spectroscopy and information technologies for cultural heritage inventory studies. J. of Cult. Her. 25, 94-100.
  • Unsalan, O., Kuzucuoglu, A.H., 2016. Effects of hazardous pollutants on the walls of Valence Aqueduct (Istanbul) by Raman spectroscopy, SEM-EDX and Geographical Information System. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 152, 572-576.
  • Unsalan, O., Kus, N., Jarmelo, S., Fausto, R., 2015. Trans- and cis-stilbene isolated in cryogenic argon and xenon matrices. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 136, 81-94.
  • Unsalan, O., Sert, Y., Ari, H., Simão, A., Yilmaz, A., Boyukata, M., Bolukbasi, O., Bolelli, K., Yalcin, I., 2014. Micro-Raman, Mid-IR, Far-IR and DFT studies on 2-[4-(4-Fluorobenzamido)phenyl]benzothiazole Spectrochim. Acta Part A: Mol. and Biomol. Spec. 125, 414-421.
  • Unsalan, O., Yilmaz, A. Bolukbasi, O. Ozturk, B., Esenoglu, H.H., Ildiz, G.O., Ornek, C.Y., 2012. Micro-Raman, FTIR, SEM-EDX and structural analysis of the Çanakkale meteorite. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 92, 250-255.
  • van der Marel H. W. and Beutelspacher H., 1976. Atlas of Infrared spetroscopy of clay minerals and their admixtures. Elsevier, Amsterdam.
  • Verma, S.K., Deb, M.K., Bajpai, S., Suzuki, Y., Sinha, S.K., Gong, Y., 2007. A simple diffuse reflectance Fourier transform infrared spectroscopic determination of sulfur dioxide in ambient air using potassium tetrachloromercurate as the absorbing reagent. J. AOAC Int. 90 (4), 1180-90.
  • Verma, S.K., Deb, M.K., 2007a. Direct and rapid determination of sulphate in environmental samples with diffuse reflectance Fourier transform infrared spectroscopy using KBr substrate. Talanta 71 (4), 1546-52.
  • Verma, S.K., Deb, M.K., 2007b. Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Anal. Chim. Acta 582 (2), 382-9.
  • Wang, C., Li, W., Guo, M., Ji, J., 2017. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci. Rep. 7, 40709.
  • Woelki, G., Friedrich, S., Hanschmann, G., Salzer, R., 1997. HPLC fractination and structural dynamics of humic acids. Fresenius J. Anal. Chem. 357, 548-552.
  • Zeine, C., Grobe, J., 1997. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the preservation of historical monuments: Studies on salt migration. Microchim. Acta 125 (1-4), 279-282.
Year 2020, Volume: 2 Issue: 1, 1 - 43, 28.09.2020

Abstract

References

  • Bashagaluke, J., Nshobole, N., Fataki, D., Mochoge, B., Mugwe, J., and Walangululu, J.W., 2015. Application of infrared technique in soil properties’ characterization in South Kivu province of DR Congo. African Journal of Food Science and Technology 6 (2), 58-67.
  • Bellamy, L.J., 1975. The Infra-red spectra of complex molecules; Chapman and Hall: London, p 433.
  • Billes, F., Pataki, H., Unsalan, O., Mikosch, H., Vajna, B., Marosi, G., 2012. Solvent effect on the vibrational spectra of Carvedilol. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 95, 148-164.
  • Bishop, J.L., Koeberl, C., Kralik, C., Fröschl, H., Englert, P.A., Andersen, D.W., Pieters, C. M., Wharton, R.A., 1996. Geochim. Cosmochim. Acta. 60 (5), 765-785.
  • Blanch, A.J., Quinton, J.S., Lenehan, C.E., Pring, A., 2008. The crystal chemistry of Al-bearing goethites: an infrared spectroscopic study. Mineral. Mag. 72, 1043–1056.
  • Calderon, F.J., Mikha, M.M., Vigil, M.F., Nielsen, D.C., Benjamin, J.G., and Reeves, J.B., 2011. Diffuse-Reflectance Mid-infrared spectral properties of soils under alternative crop rotations in a semi-arid climate. Comm. in Soil Sci. and Plant Analysis 42 (17), 2143-2159.
  • Cannane, N. Oumabady Alisa, Rajendran, M. Selvaraju, R., 2013. FT-IR spectral studies on polluted soils from industrial area at Karaikal Puducherry State, South India. Spectrochim. Acta Part A: Mol. and Biomol. Spec., 110, 46-54.
  • Candeias, C., Vicente, E., Tome, M., Rocha, F., Avila, P., Alves, C., 2020. Geochemical, mineralogical and morphological characterisation of road dust and associated health risks. Int. J. Environ. Res. Public Health 17 (5).
  • Capriel, P., 1997. Hydrophobicity of organic matter in arable soils: influence of management. Eur. J. Soil Sci. 48 (3), 457-462.
  • Capriel, P., Beck, T., Borchert, H., Gronholz, J., Zachmann, G., 1995. Hydrophobicity of the Organic-Matter in Arable Soils. Soil Biology & Biochemistry 27 (11), 1453-1458.
  • Cases, J.M., Liétard, O., Yvon, J., Delon, J.F., 1982. Étude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. de Minéralogie 105 (5), 439-455.
  • Delineau, T., Allard, T., Muller, J.-P., Barres, O., Yvon, J., Cases, J.-M., 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays and Clay Minerals 42 (3), 308-320.
  • Dick, D.P., Santos, J.H.Z., Ferranti, E.M., 2003. Chemical characterization and infrared spectroscopy of soil organic matter from two southern Brazilian soils. Revista Brasileira De Ciencia Do Solo 27 (1), 29-39.
  • Downey, G., Briandet, R., Wilson, R.H., Kemsley, E.K., 1997. Near- and mid-infrared spectroscopies in food authentication: Coffee varietal identification. J. of Agricultural and Food Chem. 45 (11), 4357-4361.
  • Ellerbrock, R.H., Gerke, H.H., Bohm, C., 2009. In situ DRIFT characterization of organic matter composition on soil structural surfaces. Soil Science Society of America Journal 73 (2), 531-540.
  • Erdogdu, Y. Dereli, Ö, Sajan, D., Joseph, L., Unsalan, O., Gulluoglu, M.T., 2012. Vibrational (FT-IR and FT-Raman) spectral invetigation of 7-aminoflavone with density functional theoretical simulations. Mol. Sim., 38 (4) 315-325.
  • Forrester, S., Janik, L., McLaughlin, M., 2010. An infrared spectroscopic test for total petroleum hydrocarbon (TPH) contamination in soils, pp. 13-16. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, Wien.
  • Forrester, S.T., Janik, L.J., McLaughlin M.J., Soriano-Disla, J.M., Stewart, R., Dearman, B., 2013. Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Science Society of America Journal 77 (2), 450-460.
  • Gonzalez-Grijalva, B., Meza-Figueroa, D., Romero, F.M., Robles-Morua, A., Meza-Montenegro, M., Garcia-Rico, L., Ochoa-Contreras, R., 2019. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Sci. Total Environ. 657, 1468-1479.
  • Hobley, E., Willgoose, G.R., Frisia, S., Jacobsen, G., 2014. Vertical distribution of charcoal in a sandy soil: evidence from DRIFT spectra and field emission scanning electron microscopy. Eur. J. of Soil Sci. 65 (5), 751-762.
  • Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T.F.A., McBratney, A.B., Pallasser, R., Pozza, L., 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 241-242, 180-209.
  • İslam, N., Rabha, S., Silva, Luis. F. O., Saikia, Binoy, K., 2019. Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health. 41, 2309-2053.
  • Janik, L.J., Merry, R.H., Skjemstad, J.O., 1998. Can mid infrared diffuse reflectance analysis replace soil extractions?. Australian Journal of Experimental Agriculture 38 (7), 681-696.
  • Jiang, H.-H., Cai, L.-M., Wen, H.-H., Hu, G.-C., Chen, L.-G., Luo, J., 2020a. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. of The Total Environ. 701, 134466.
  • Jiang, H.-H., Cai, L.-M., Wen, H.-H., Luo, J., 2020b. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci. Rep. 10 (1), 6460.
  • Kaiser, K., Guggenberger, G., Haumaier, L., Zech, W., 1997. Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur. J. of Soil Sci. 48 (2), 301-310.
  • Kaluderović, Lazar M., Tomić, Zorica P., Ašanin, Darko P., Đurović-Pejčev, Rada D., Kresović, Branka J., 2018. Examination of the influence of phenyltrimethylammonium chloride (PTMA) concentration on acetochlor adsorption by modified montmorillonite. J. of Environ. Sci. and Health, Part B. 53 (8), 503-509.
  • Kemsley, E.K., Holland, J.K., Defernez, M., Wilson, R.H., 1996. Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. of Agricultural and Food Chemistry 44 (12), 3864-3870.
  • Kim, S.-O., Kim, J.-J., Yun, S.-T., Kim, K.-W., 2003. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical fields. Water, Air, and Soil Pollution 150 (1), 135-162.
  • Koretsky, Carla M., Sverjensky, Dimitri A., Salisbury John W., D’Aria, Dana M., 1997. Detection of surface hydroxyl species on quartz, γ-alumina, and feldspars using diffuse reflectance infrared spectroscopy. Geochim. et Cosmochim. Acta, 61 (11), 2193-2210.
  • Kubelka, P., Munk, F., 1931. Ein beitrag zur optik der farbanstriche. Z. Techn. Phys. 12, 593-601.
  • Kuzucuoğlu, A., 2017. Preventive conservation in cultural heritage case study: MEMORI survey, Journal of Art, Istanbul University, https://dergipark.org.tr/tr/pub/iuarts/issue/47768/603431
  • Kuzucuoglu, A.H., Kiraz, N.M., Unsalan, O., Taşdemir, İ., 2015. A documentation proposal for manuscripts in libraries A case study: İstanbul University Faculty of Letters Rare Books Library. Bilgi Dünyası 16 (1), 141-159.
  • Leue, M., Gerke, H.H., Ellerbrock, R.H., 2013. Millimetre-scale distribution of organic matter composition at intact biopore and crack surfaces. Eur. J. of Soil Sci. 64 (6), 757-769.
  • Machovic, V., Novak, F., 1998. Diffuse reflectance infrared spectroscopy of soil bitumens from Sumava region. Chemicke Listy 92 (2), 151-156.
  • Margenot, A.J., Calderon, F.J., Magrini, K.A., Evans, R.J., 2017. Application of DRIFTS, C-13 NMR, and py-MBMS to Characterize the effects of soil science oxidation assays on soil organic matter composition in a mollic xerofluvent. Appl. Spec. 71 (7), 1506-1518.
  • Menges, F., 2020. Spectragryph - optical spectroscopy software, Version 1.2.14, 2020, http://www.effemm2.de/spectragryph/.
  • Messerschmidt, R.G., 1985. Complete elimination of specular reflectance in Infrared diffuse reflectance measurements. Appl. Spec. 39 (4), 737-739.
  • Mohsenipour, M., Shahid, S., Ebrahimi, K., 2015. Nitrate adsorption on clay kaolin: Batch Tests. J. of Chemistry 2015, 397069.
  • Montecchio, D., Francioso, O., Carletti, P., Pizzeghello, D., Chersich, S., Previtali, F., Nardi, S., 2006. Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. J. of Thermal Analysis and Calorimetry 83 (2), 393-399.
  • Muller, J.P., Ildefonse, P., Calas, G., 1990. Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the nopal uranium deposit, Chihuahua, Mexico. Clays and Clay Minerals 38 (6), 600-608.
  • Muller, J.P., Bocquier, G., 1987. Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon, in: Schulz, L.G., van Olphen H., Mumpton, F.A. Eds.), Proceedings of the International Clay Conference, Bloomington, Indiana, pp. 186-194.
  • Ng, W., P. Malone, B., Minasny, B., 2017. Rapid assessment of petroleum-contaminated soils with infrared spectroscopy. Geoderma 289, 150-160.
  • Nguyen, T.T., Janik, L.J., Raupach, M., 1991. Diffuse reflectance infrared Fourier-Transform (Drift) spectroscopy in soil studies. Australian J. of Soil Res. 29 (1), 49-67.
  • Niemeyer, J., Chen, Y., Bollag, J.M., 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-Transform infrared-spectroscopy. Soil Science Society of America Journal 56 (1), 135-140.
  • Parikh, Sanjai J., Goyne, Keith W., Margenot, Andrew J., Mukome, Fungai N. D., Calderón, Francisco J., 2014. Soil chemical insights provided through vibrational spectroscopy. Publications from USDA-ARS / UNL Faculty. Paper 1471.
  • Pieters, C.M., Englert, P.A.J., 1993. Eds. Remote geochemical analysis: Elemental and mineralogical composition; Cambridge University Press: Cambridge, p 594.
  • Reeves, J.B., 2012. Mid-Infrared spectroscopy of biochars and spectral similarities to coal and kerogens: What are the implications? Appl. Spect. 66 (6), 689-695.
  • Reeves, J., McCarty, G., Mimmo, T., 2002. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ. Pollution 116, S277-S284.
  • Reeves, J.B., McCarty, G.W., Reeves, V.B., 2001. Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J. of Agricultural and Food Chem. 49 (2), 766-772.
  • Reeves, J.B., 2001a. Near- versus mid-infrared diffuse reflectance spectroscopy for determination of minerals in dried poultry manure. Poultry Science 80 (10), 1437-1443.
  • Reeves, J.B., 2001b. Near-infrared diffuse reflectance spectroscopy for the analysis of poultry manures. Journal of Agricultural and Food Chemistry 49 (5), 2193-2197.
  • Reeves, J.B., 1994a. Influence of pH, ionic-strength, and physical state on the near-infrared spectra of model compounds. J. of Aoac International 77 (4), 814-820.
  • Reeves, J.B., 1994b. Solid-state matrix effects on the near-infrared (NIR) spectra of sugars. Abstracts of Papers of the American Chemical Society 208, 4-Carb.
  • Russell, J.D., 1987. Infrared methods, a handbook of determinative methods in clay mineralogy, edited by Wilson. Chapman and Hall. New York., pp. 133-173. Blackie and Son, London.
  • Schwertmann, U., Taylor, R.M., 1989. Iron oxides. In: Minerals in Soil Environments (eds Dixon, J.B. and Weed, S.B.), pp. 379-438. Soil Science Society of America, Madison, WI.
  • Soda, R., 1961. lnfrared absorption spectra of quartz and some other silica modifications. Bull. of the Chem. Soc. of Japan 34 (10), 1491-1495.
  • The MEMORI project., 2010. Measurement, Effect assessment and Mitigation of Pollutant Impact on Movable Cultural Assets. Innovative Research for Market Transfer", is implemented within the EU 7th Framework Programme. http://www.memori.fraunhofer.de/
  • Unsalan, O., Kuzucuoglu, A.H., Cakir, C., Kaygisiz, E., 2017. One pilot application of mobile Raman spectroscopy and information technologies for cultural heritage inventory studies. J. of Cult. Her. 25, 94-100.
  • Unsalan, O., Kuzucuoglu, A.H., 2016. Effects of hazardous pollutants on the walls of Valence Aqueduct (Istanbul) by Raman spectroscopy, SEM-EDX and Geographical Information System. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 152, 572-576.
  • Unsalan, O., Kus, N., Jarmelo, S., Fausto, R., 2015. Trans- and cis-stilbene isolated in cryogenic argon and xenon matrices. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 136, 81-94.
  • Unsalan, O., Sert, Y., Ari, H., Simão, A., Yilmaz, A., Boyukata, M., Bolukbasi, O., Bolelli, K., Yalcin, I., 2014. Micro-Raman, Mid-IR, Far-IR and DFT studies on 2-[4-(4-Fluorobenzamido)phenyl]benzothiazole Spectrochim. Acta Part A: Mol. and Biomol. Spec. 125, 414-421.
  • Unsalan, O., Yilmaz, A. Bolukbasi, O. Ozturk, B., Esenoglu, H.H., Ildiz, G.O., Ornek, C.Y., 2012. Micro-Raman, FTIR, SEM-EDX and structural analysis of the Çanakkale meteorite. Spectrochim. Acta Part A: Mol. and Biomol. Spec. 92, 250-255.
  • van der Marel H. W. and Beutelspacher H., 1976. Atlas of Infrared spetroscopy of clay minerals and their admixtures. Elsevier, Amsterdam.
  • Verma, S.K., Deb, M.K., Bajpai, S., Suzuki, Y., Sinha, S.K., Gong, Y., 2007. A simple diffuse reflectance Fourier transform infrared spectroscopic determination of sulfur dioxide in ambient air using potassium tetrachloromercurate as the absorbing reagent. J. AOAC Int. 90 (4), 1180-90.
  • Verma, S.K., Deb, M.K., 2007a. Direct and rapid determination of sulphate in environmental samples with diffuse reflectance Fourier transform infrared spectroscopy using KBr substrate. Talanta 71 (4), 1546-52.
  • Verma, S.K., Deb, M.K., 2007b. Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Anal. Chim. Acta 582 (2), 382-9.
  • Wang, C., Li, W., Guo, M., Ji, J., 2017. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci. Rep. 7, 40709.
  • Woelki, G., Friedrich, S., Hanschmann, G., Salzer, R., 1997. HPLC fractination and structural dynamics of humic acids. Fresenius J. Anal. Chem. 357, 548-552.
  • Zeine, C., Grobe, J., 1997. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the preservation of historical monuments: Studies on salt migration. Microchim. Acta 125 (1-4), 279-282.
There are 70 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy
Journal Section Articles
Authors

Ozan Ünsalan 0000-0001-5736-7530

Cisem Altunayar-unsalan 0000-0001-6479-4223

Alpaslan Kuzucuoğlu 0000-0003-3186-2204

Publication Date September 28, 2020
Submission Date August 10, 2020
Acceptance Date September 28, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Ünsalan, O., Altunayar-unsalan, C., & Kuzucuoğlu, A. (2020). Kaolinite based risk assessment of traffic-related pollution for selected historical libraries in Istanbul: Insights from urban topsoils studied by DRIFTS. Journal of Spectroscopy and Molecular Sciences, 2(1), 1-43.