Research Article
BibTex RIS Cite

On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation

Year 2018, Volume: 2 Issue: 3, 51 - 60, 31.07.2018

Abstract

Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x,y]) = 0 for all x,y ∈ R, iii) if [d(x),y] = [α(x),y] for all x,y ∈ R, iv) if d(x)◦y = 0 for all x,y ∈ R, v) if d(x◦y) = 0 for all x,y ∈ R. 

References

  • References [1] HERSTEIN I.N., 1976, Rings with Involutions, Chicago Univ., Chicago Press. [2] KIM K. H. and LEE Y. H., 2017, A Note on ∗-Derivation of Prime ∗-Rings, International Mathematical Forum, 12(8), 391-398. [3] REHMAN N., ANSARI A. Z. and HAETINGER C., 2013, A Note on Homomorphisims and Anti- Homomorphisims on ∗-Ring, Thai Journal of Mathematics, 11(3), 741-750. [4] POSNER E.C.,1957, Derivations in Prime Rings, Proc. Amer. Math. Soc., 8:1093-1100. [5] BRESAR M. and VUKMAN J.,1989, On Some Additive Mappings in Rings with Involution, Aequationes Math., 38, 178-185. 10 Gu¨lay BOSNALI et al. [6] HERSTEIN I.N.,1957, Jordan Derivations of Prime Rings, Proc. Amer. Math. Soc., 8(6), 11041110. [7] ZALAR B., 1991, On Centralizers of Semiprime Rings, Comment. Math. Univ. Caroline, 32(4), 609-614. [8] SALHI A. and FOSNER A., 2010, On Jordan (α,β)∗-Derivations In Semiprime Rings, Int J. Algebra, 4(3), 99-108 [9] KOC¸ E., G¨OLBASI ¨O., 2017, Results On α-∗-Centralizers of Prime and Semiprime Rings with Involution, commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), 172-178.
Year 2018, Volume: 2 Issue: 3, 51 - 60, 31.07.2018

Abstract

References

  • References [1] HERSTEIN I.N., 1976, Rings with Involutions, Chicago Univ., Chicago Press. [2] KIM K. H. and LEE Y. H., 2017, A Note on ∗-Derivation of Prime ∗-Rings, International Mathematical Forum, 12(8), 391-398. [3] REHMAN N., ANSARI A. Z. and HAETINGER C., 2013, A Note on Homomorphisims and Anti- Homomorphisims on ∗-Ring, Thai Journal of Mathematics, 11(3), 741-750. [4] POSNER E.C.,1957, Derivations in Prime Rings, Proc. Amer. Math. Soc., 8:1093-1100. [5] BRESAR M. and VUKMAN J.,1989, On Some Additive Mappings in Rings with Involution, Aequationes Math., 38, 178-185. 10 Gu¨lay BOSNALI et al. [6] HERSTEIN I.N.,1957, Jordan Derivations of Prime Rings, Proc. Amer. Math. Soc., 8(6), 11041110. [7] ZALAR B., 1991, On Centralizers of Semiprime Rings, Comment. Math. Univ. Caroline, 32(4), 609-614. [8] SALHI A. and FOSNER A., 2010, On Jordan (α,β)∗-Derivations In Semiprime Rings, Int J. Algebra, 4(3), 99-108 [9] KOC¸ E., G¨OLBASI ¨O., 2017, Results On α-∗-Centralizers of Prime and Semiprime Rings with Involution, commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), 172-178.
There are 1 citations in total.

Details

Primary Language English
Journal Section Basic Sciences and Engineering
Authors

Gülay Bosnalı This is me

Neşet Aydın

Selin Türkmen This is me

Publication Date July 31, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Bosnalı, G., Aydın, N., & Türkmen, S. (2018). On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation. Journal of Scientific Perspectives, 2(3), 51-60.