Review
BibTex RIS Cite

LOWER-LIMB ROBOTIC REHABILITATION

Year 2021, Issue: 002, 18 - 31, 30.12.2021

Abstract

Due to complications such as stroke, spinal cord injuries, and cerebral palsy, some or all of the lower extremity locomotor functions may be lost. With such patients; when correct and appropriate rehabilitation programs are applied in, a positive increase in locomotor functions can be achieved. Especially in hemiplegic cases, successful results are obtained with the help of early rehabilitation programs.
Thanks to the developments in technology, the idea of using robotic systems in rehabilitation processes has been put forward. During the process, robotic rehabilitation devices with different techniques and strategies were produced and started to be used actively. In this study, technologies, working principles and contributions to the treatment processes of robotic rehabilitation devices used in the rehabilitation of patients who have lost lower extremity function due to stroke, spinal cord injuries, and cerebral palsy were evaluated.

References

  • [1] Lloyd-Jones, D., Adams, R. J., Brown, T. M. et al., (2010), “Heart disease and stroke statistics—2010 update: a report from the American heart association,” Circulation, vol. 121, no. 7, pp. e46–e215.
  • [2] Diaz, I., Gil, J.J.,Sanchez, E., (2011), Lower-Limb Robotic Rehabilitation: Literature Review and Challenges, Hindawi Publishing Corporation Journal of Robotics Volume 2011,
  • [3] Smith, D.S,. Goldenberg, E., Ashburn, A., et al.,(1981) “Remedial therapy after stroke: a randomised controlled trial,” The British Medical Journal, vol. 282, no. 6263, pp. 517–520.
  • [4] Dam, M., Tonin, P., Casson S., et al.,(1993) “The effects of long-term rehabilitation therapy on poststroke hemiplegic patients,” Stroke, vol. 24, no. 8, pp. 1186–1191.
  • [5] Perry J, Burnfield JM.,(2010) Gait Analysis, Normal and Pathological Function. 2nd ed. Thorofare, NJ: Slack Inc;.
  • [6] Molteni, F., Gasperini, G., Cannaviello, G., Guanziroli, E., (2018), Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review, Innovations Influencing Physical Medicine and Rehabilitation, 174- 188.
  • [7] Morasso P, Casadio M, Mohan V, Rea F, Zenzeri J. (2015), Revisiting the body-schema concept in the context of whole-body postural-focal dynamics. Front Hum Neurosci;9:83.
  • [8] Taub E, Uswatte G, Elbert T. (2002), New treatments in neurorehabilitation founded on basic research. Nature Reviews Neuroscience;3:228–236
  • [9] Majsak MJ. (1996), Application of motor learning principles to the stroke population. Topics in Stroke Rehabilitation;3:27–59.
  • [10] Carr JH, Shepherd R., (1987), A motor relearning programme for stroke. London: Heinemann;.
  • [11] Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J., (2004), The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clinical Rehabilitation;18:833–862
  • [12] Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellstrom K, Kristensen L, Sjolund B, Sunnerhagen KS, Grimby G.,(2001), Walking training of patients with hemiparesis at an early stage after stroke: A comparison of walking training on a treadmill with body weight support and walking training on the ground. Clinical Rehabilitation;15: 515–527.
  • [13] Classen J, Liepert J, Wise SP, Hallett M, Cohen LG., (1998), Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology;79: 1117–1123.
  • [14] Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C.,(2000), Treatment-induced cortical reorganization after stroke in humans. Stroke ;31:1210–1216.
  • [15] Luft AR, Forrester L, Macko RF, McCombe-Waller S, Whitall J, Villagra F, Hanley DF., (2005), Brain activation of lower extremity movement in chronically impaired stroke survivors. Neuroimage;26:184–194.
  • [16] Sale A, Berardi N, Maffei L., (2009), Enrich the environment to empower the brain. Trends Neurosci ;32:233-239.
  • [17] Gerloff C, Bushara K, Sailer A, et al., (2006), Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain; 129(pt 3):791-808
  • [18] Nudo RJ., (2007), Postinfarct cortical plasticity and behavioral recovery. Stroke;38(2 suppl):840-845.
  • [19] Carr J., Shepherd R. (1987). A Motor Relearning Program for Stroke, Aspen Publishers. [20] Ott, C., Albu-Schäffer, A., Kugi, A., Hirzinger, G. (2008), On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics; 24(2):416–29.
  • [21] Colombo G., Joerg M., Schreier R., Dietz V. (2000). Treadmill training of paraplegic patients using a robotic orthosis, Journal of Rehabilitation Research and Development, C.37, No. 6, s. 693–700.
  • [22] Sucuoğlu, H., (2018), Robotik Rehabilitasyon, Güneş Yayınevi,35.
  • [23] Anas R. Alashram, Giuseppe Annino, Elvira Padua, (2021)Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat, Journal of Clinical Neuroscience, Volume 91,Pages 260-269.
  • [24] https://www.hocoma.com/solutions/lokomat/
  • [25] Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., Schmalohr D. (2008). Gait training with the newly developed “LokoHelp”-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study,” Brain Injury, C.22, no. 7-8, s.625– 32.
  • [26] Freivogel, S., Schmalohr, D., Mehrholz, J., (2009). Improved walking ability and reduced therapeutic stress with an electromechanical gait device, Journal of Rehabilitation Medicine, C. 41, no. 9, s.734–739,
  • [27] https://www.woodway.com/products/loko-help/
  • [28] West, G. R. (2004). Powered gait orthosis and method of utilizing same, Patent number 6689 075.
  • [29] https://exoskeletonreport.com/product/reoambulator/
  • [30] https://www.bamateknoloji.com/urunlerimiz/robotik-rehabilitasyon/robogait/
  • [31] http://walkbot.co.kr/introduction/
  • [32] https://www.rehatechnology.com/en/
  • [33] https://thera-trainer.com/en-us/thera-trainer-products/gait/thera-trainer-lyra
  • [34] Surdilovic, D., Bernhardt. R., (2004). “STRING-MAN: a new wire robot for gait rehabilitation,” in Proceedings of the IEEE International Conference on Robotics and Automation, May, C.2, s. 2031–2036.
  • [35] Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S. (2002). Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study, Stroke, C.33, no. 12, s.2895–2901.
  • [36] Peurala, S. H., Airaksinen, O., Huuskonen, P., Jäkäala, P., Juhakoski, M., Sandel, K., Tarkka I. M., Sivenius, J., (2009). Effects of intensive therapy using gait trainer or floor walking exercises early after stroke, Journal of Rehabilitation Medicine, C.41, no. 3, s.166–173.
  • [37] https://reha-stim.com/gt-ii/
  • [38] Marian G. Alvarez-Perez, Mario A. Garcia-Murillo & J. Jesús Cervantes- Sánchez (2020) Robot-assisted ankle rehabilitation: a review, Disability and Rehabilitation: Assistive Technology, 15:4, 394-40
  • [39] Cobb G. Walking Motion. 1935. https://patents.google.com/ patent/US2010482
  • [40] Blaya JA, Herr H., (2004), Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng.;12:24–31.
  • [41] Dollar AM, Herr H., (2008), Lower extremity exoskeletons and active orthoses: challenges and state of the art. IEEE Trans Robot.;24:144–158.
  • [42] Boehler AW, Hollander KW, Sugar TG, et al., (2008), Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). Robotics and automation, 2008. IEEE International Conference; Pasadena, CA, United States; p. 2025–2030
  • [43] Chou C-P, (1994), Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles. Robotics and automation. 1994 IEEE International Conference; San Diego, CA, USA; p. 281–286.
  • [44] Gordon KE, Sawicki GS, Ferris DP., (2006), Mechanical performanceof artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech.;39:1832–1841.
  • [45] Girone MJ, Burdea GC, Bouzit M., (1999), The "Rutgers ankle" orthopaedic rehabilitation interface. Proc ASME Haptics Symp.;67:305–312
  • [46] Liu G, Gao J, Yue H, et al., (2006), Design and kinematics analysisof parallel robots for ankle rehabilitation. IEEE International Conference on Intelligent Robots and Systems, Beijing, China; p. 253–258.
  • [47] Yoon J, Ryu J, Lim KB., (2006), Reconfigurable ankle rehabilitation robot for various exercises. J Robot Syst.;22:15–33.
  • [48] Dasgupta B, Mruthyunjaya TS., (2000), Stewart platform manipulator: a review. Mech Mach Theory.;35:15–40
  • [49] Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B.,( 2017), Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev;5:CD006185.
  • [50] Lo K, Stephenson M, Lockwood C.,(2017), Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: A systematic review. JBI Database System Rev Implement Rep 2017;15:3049-3091.
  • [51] Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro` RS., (2018), What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and metaanalysis. Clin Neurosci;48:11-17

ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU

Year 2021, Issue: 002, 18 - 31, 30.12.2021

Abstract

İnme, omurilik yaralanmaları, serebral palsi gibi rahatsızlıklar nedeni ile alt ekstremite lokomotor fonksiyonlarının bir kısmı veya tamamı kaybedilebilmektedir. Bu tip hastalarda doğru ve uygun rehabilitasyon programları uygulandığında lokomotor fonksiyonlarda pozitif artış sağlanabilmektedir. Özellikle hemiplejik vakalarda erken dönemde uygulanan rehabilitasyon programları yardımı ile başarılı sonuçlar elde edilmektedir.
Teknolojide meydana gelen gelişmeler ile birlikte robotik sistemlerin rehabilitasyon süreçlerinde kullanımı fikri ortaya atılmıştır. Süreç içerisinde farklı teknik ve stratejilere sahip robotik rehabilitasyon cihazları üretilmiş ve aktif olarak kullanılmaya başlanmıştır. Bu çalışmada inme, omurilik yaralanmaları, serebral palsi gibi rahatsızlıklar nedeni ile alt ekstremite fonksiyon kaybına uğramış hastaların rehabilitasyonunda kullanılan robotik rehabilitasyon cihazlarının teknolojileri, çalışma prensipleri ve tedavi proseslerine getirdiği katkılar değerlendirilmiştir.

References

  • [1] Lloyd-Jones, D., Adams, R. J., Brown, T. M. et al., (2010), “Heart disease and stroke statistics—2010 update: a report from the American heart association,” Circulation, vol. 121, no. 7, pp. e46–e215.
  • [2] Diaz, I., Gil, J.J.,Sanchez, E., (2011), Lower-Limb Robotic Rehabilitation: Literature Review and Challenges, Hindawi Publishing Corporation Journal of Robotics Volume 2011,
  • [3] Smith, D.S,. Goldenberg, E., Ashburn, A., et al.,(1981) “Remedial therapy after stroke: a randomised controlled trial,” The British Medical Journal, vol. 282, no. 6263, pp. 517–520.
  • [4] Dam, M., Tonin, P., Casson S., et al.,(1993) “The effects of long-term rehabilitation therapy on poststroke hemiplegic patients,” Stroke, vol. 24, no. 8, pp. 1186–1191.
  • [5] Perry J, Burnfield JM.,(2010) Gait Analysis, Normal and Pathological Function. 2nd ed. Thorofare, NJ: Slack Inc;.
  • [6] Molteni, F., Gasperini, G., Cannaviello, G., Guanziroli, E., (2018), Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review, Innovations Influencing Physical Medicine and Rehabilitation, 174- 188.
  • [7] Morasso P, Casadio M, Mohan V, Rea F, Zenzeri J. (2015), Revisiting the body-schema concept in the context of whole-body postural-focal dynamics. Front Hum Neurosci;9:83.
  • [8] Taub E, Uswatte G, Elbert T. (2002), New treatments in neurorehabilitation founded on basic research. Nature Reviews Neuroscience;3:228–236
  • [9] Majsak MJ. (1996), Application of motor learning principles to the stroke population. Topics in Stroke Rehabilitation;3:27–59.
  • [10] Carr JH, Shepherd R., (1987), A motor relearning programme for stroke. London: Heinemann;.
  • [11] Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J., (2004), The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clinical Rehabilitation;18:833–862
  • [12] Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellstrom K, Kristensen L, Sjolund B, Sunnerhagen KS, Grimby G.,(2001), Walking training of patients with hemiparesis at an early stage after stroke: A comparison of walking training on a treadmill with body weight support and walking training on the ground. Clinical Rehabilitation;15: 515–527.
  • [13] Classen J, Liepert J, Wise SP, Hallett M, Cohen LG., (1998), Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology;79: 1117–1123.
  • [14] Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C.,(2000), Treatment-induced cortical reorganization after stroke in humans. Stroke ;31:1210–1216.
  • [15] Luft AR, Forrester L, Macko RF, McCombe-Waller S, Whitall J, Villagra F, Hanley DF., (2005), Brain activation of lower extremity movement in chronically impaired stroke survivors. Neuroimage;26:184–194.
  • [16] Sale A, Berardi N, Maffei L., (2009), Enrich the environment to empower the brain. Trends Neurosci ;32:233-239.
  • [17] Gerloff C, Bushara K, Sailer A, et al., (2006), Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain; 129(pt 3):791-808
  • [18] Nudo RJ., (2007), Postinfarct cortical plasticity and behavioral recovery. Stroke;38(2 suppl):840-845.
  • [19] Carr J., Shepherd R. (1987). A Motor Relearning Program for Stroke, Aspen Publishers. [20] Ott, C., Albu-Schäffer, A., Kugi, A., Hirzinger, G. (2008), On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics; 24(2):416–29.
  • [21] Colombo G., Joerg M., Schreier R., Dietz V. (2000). Treadmill training of paraplegic patients using a robotic orthosis, Journal of Rehabilitation Research and Development, C.37, No. 6, s. 693–700.
  • [22] Sucuoğlu, H., (2018), Robotik Rehabilitasyon, Güneş Yayınevi,35.
  • [23] Anas R. Alashram, Giuseppe Annino, Elvira Padua, (2021)Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat, Journal of Clinical Neuroscience, Volume 91,Pages 260-269.
  • [24] https://www.hocoma.com/solutions/lokomat/
  • [25] Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., Schmalohr D. (2008). Gait training with the newly developed “LokoHelp”-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study,” Brain Injury, C.22, no. 7-8, s.625– 32.
  • [26] Freivogel, S., Schmalohr, D., Mehrholz, J., (2009). Improved walking ability and reduced therapeutic stress with an electromechanical gait device, Journal of Rehabilitation Medicine, C. 41, no. 9, s.734–739,
  • [27] https://www.woodway.com/products/loko-help/
  • [28] West, G. R. (2004). Powered gait orthosis and method of utilizing same, Patent number 6689 075.
  • [29] https://exoskeletonreport.com/product/reoambulator/
  • [30] https://www.bamateknoloji.com/urunlerimiz/robotik-rehabilitasyon/robogait/
  • [31] http://walkbot.co.kr/introduction/
  • [32] https://www.rehatechnology.com/en/
  • [33] https://thera-trainer.com/en-us/thera-trainer-products/gait/thera-trainer-lyra
  • [34] Surdilovic, D., Bernhardt. R., (2004). “STRING-MAN: a new wire robot for gait rehabilitation,” in Proceedings of the IEEE International Conference on Robotics and Automation, May, C.2, s. 2031–2036.
  • [35] Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S. (2002). Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study, Stroke, C.33, no. 12, s.2895–2901.
  • [36] Peurala, S. H., Airaksinen, O., Huuskonen, P., Jäkäala, P., Juhakoski, M., Sandel, K., Tarkka I. M., Sivenius, J., (2009). Effects of intensive therapy using gait trainer or floor walking exercises early after stroke, Journal of Rehabilitation Medicine, C.41, no. 3, s.166–173.
  • [37] https://reha-stim.com/gt-ii/
  • [38] Marian G. Alvarez-Perez, Mario A. Garcia-Murillo & J. Jesús Cervantes- Sánchez (2020) Robot-assisted ankle rehabilitation: a review, Disability and Rehabilitation: Assistive Technology, 15:4, 394-40
  • [39] Cobb G. Walking Motion. 1935. https://patents.google.com/ patent/US2010482
  • [40] Blaya JA, Herr H., (2004), Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng.;12:24–31.
  • [41] Dollar AM, Herr H., (2008), Lower extremity exoskeletons and active orthoses: challenges and state of the art. IEEE Trans Robot.;24:144–158.
  • [42] Boehler AW, Hollander KW, Sugar TG, et al., (2008), Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). Robotics and automation, 2008. IEEE International Conference; Pasadena, CA, United States; p. 2025–2030
  • [43] Chou C-P, (1994), Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles. Robotics and automation. 1994 IEEE International Conference; San Diego, CA, USA; p. 281–286.
  • [44] Gordon KE, Sawicki GS, Ferris DP., (2006), Mechanical performanceof artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech.;39:1832–1841.
  • [45] Girone MJ, Burdea GC, Bouzit M., (1999), The "Rutgers ankle" orthopaedic rehabilitation interface. Proc ASME Haptics Symp.;67:305–312
  • [46] Liu G, Gao J, Yue H, et al., (2006), Design and kinematics analysisof parallel robots for ankle rehabilitation. IEEE International Conference on Intelligent Robots and Systems, Beijing, China; p. 253–258.
  • [47] Yoon J, Ryu J, Lim KB., (2006), Reconfigurable ankle rehabilitation robot for various exercises. J Robot Syst.;22:15–33.
  • [48] Dasgupta B, Mruthyunjaya TS., (2000), Stewart platform manipulator: a review. Mech Mach Theory.;35:15–40
  • [49] Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B.,( 2017), Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev;5:CD006185.
  • [50] Lo K, Stephenson M, Lockwood C.,(2017), Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: A systematic review. JBI Database System Rev Implement Rep 2017;15:3049-3091.
  • [51] Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro` RS., (2018), What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and metaanalysis. Clin Neurosci;48:11-17
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Kemal Cem Köse 0000-0002-2705-9075

Publication Date December 30, 2021
Submission Date June 1, 2022
Published in Issue Year 2021 Issue: 002

Cite

APA Köse, K. C. (2021). ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU. Journal of Scientific Reports-C(002), 18-31.
AMA Köse KC. ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU. JSR-C. December 2021;(002):18-31.
Chicago Köse, Kemal Cem. “ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU”. Journal of Scientific Reports-C, no. 002 (December 2021): 18-31.
EndNote Köse KC (December 1, 2021) ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU. Journal of Scientific Reports-C 002 18–31.
IEEE K. C. Köse, “ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU”, JSR-C, no. 002, pp. 18–31, December 2021.
ISNAD Köse, Kemal Cem. “ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU”. Journal of Scientific Reports-C 002 (December 2021), 18-31.
JAMA Köse KC. ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU. JSR-C. 2021;:18–31.
MLA Köse, Kemal Cem. “ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU”. Journal of Scientific Reports-C, no. 002, 2021, pp. 18-31.
Vancouver Köse KC. ALT EKSTREMİTENİN ROBOTİK REHABİLİTASYONU. JSR-C. 2021(002):18-31.