Review
BibTex RIS Cite

Bee diseases and treatment methods

Year 2025, Issue: 009, 28 - 54, 30.04.2025

Abstract

Bee diseases are one of the main problems related to beekeeping activities. Harmful microorganisms such as parasites, bacteria, viruses, and fungi cause diseases in honey bees juvenile and adult periods. These disease-causing agents enter the colony by various means and spread rapidly from colony to colony, apiary to apiary, and region to region. Therefore, bee diseases are the main problems that negatively affect beekeeping activities, cause colony losses, and limit production efficiency. In bee diseases, symptoms such as watery stools, thirst, tremors during rest, unusual wing angles, restless behavior of bees in the chronic period, and changes in body physiology are observed. These symptoms appear mostly in the spring. However, the disease suppresses the hive during the summer period. Therefore, to minimize the problems in the hive, there is a need to control the diseases and develop control methods. Colonies should be observed correctly in the spring and fall periods and strengthening activities should be carried out. It is recommended to move sick colonies to disinfected hives after they have been treated. The reason for this is to prepare the colony for the winter period without allowing brood development to stop during the summer period. It is very difficult to say that beekeepers are made aware of this field, the correct treatment methods are applied, and they have access to the relevant resources. It is seen that some existing treatment methods and drugs are not direct solutions for bee diseases. For this reason, this review covers bee diseases and pests that can cause colony losses in detail. These diseases are mainly classified as 'bacterial', 'viral', 'protozoal', and 'other colony pests'. In addition, traditional and new technological treatment methods for bee diseases are also briefly mentioned.

References

  • [1] S. Nekoei, M. Rezvan, F. Khamesipour, C. Mayack, M. B. Molento, and P. D. Revainera, “A Systematic Review of Honey Bee İnfections and Available Treatment Options,” Vet. Med. Sci., vol. 9, no. 4, pp. 1848–1860, Jul. 2023, doi: 10.1002/vms3.1194.
  • [2] B. Olas, “Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases,” Nutrients, vol. 14, no. 11, p. 2267, May 2022, doi: 10.3390/nu14112267.
  • [3] E. Amiri, M. Strand, O. Rueppell, and D. Tarpy, “Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health,” Insects, vol. 8, no. 2, p. 48, May 2017, doi: 10.3390/insects8020048.
  • [4] H. Kim, S.-Y. Park, and G. Lee, “Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature Review,” Toxins (Basel)., vol. 11, no. 7, p. 374, Jun. 2019, doi: 10.3390/toxins11070374.
  • [5] J. Ebeling, A. Fünfhaus, and S. Gisder, “Special Issue: Honey Bee Pathogens and Parasites,” Vet. Sci., vol. 9, no. 10, p. 515, Sep. 2022, doi: 10.3390/vetsci9100515.
  • [6] H. Tutun, N. Koç, and A. Kart, “Plant Essential Oils Used Against Some Bee Diseases,” Turkish J. Agric. - Food Sci. Technol., vol. 6, no. 1, pp. 34–45, Feb. 2018, doi: 10.24925/turjaf.v6i1.34-45.1502.
  • [7] P. J. Marín-García, Y. Peyre, A. E. Ahuir-Baraja, M. M. Garijo, and L. Llobat, “The Role of Nosema Ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment,” Vet. Sci., vol. 9, no. 3, p. 130, Mar. 2022, doi: 10.3390/vetsci9030130.
  • [8] M. Goblirsch, “Nosema Ceranae Disease of the Honey Bee (Apis Mellifera),” Apidologie, vol. 49, no. 1, pp. 131–150, Feb. 2018, doi: 10.1007/s13592-017-0535-1.
  • [9] A. G. .Dolezal and A. L. Toth, “Feedbacks Between Nutrition and Disease in Honey Bee Health,” Curr. Opin. Insect Sci., vol. 26, pp. 114–119, Apr. 2018, doi: 10.1016/j.cois.2018.02.006.
  • [10] M. Sarwar, “Fungal Diseases of Honey Bees ( Hymenoptera : Apidae ) That Induce Considerable Losses to Colonies and Protocol for Treatment,” Int. J. Zool. Stud., vol. 1, no. 1, pp. 8–13, 2016.
  • [11] K. Kuzyšinová, D. Mudroňová, J. Toporčák, L. Molnár, and P. Javorský, “The Use of Probiotics, Essential Oils and Fatty Acids in the Control of American Foulbrood and Other Bee Diseases,” J. Apic. Res., vol. 55, no. 5, pp. 386–395, Dec. 2016, doi: 10.1080/00218839.2016.1252067.
  • [12] E. Halvaci, T. Kozak, M. Gül, H. Kars, and F. Şen, “Bee Anatomy: A Comprehensive Overview of Bee Morphology and Physiology,” / J. Sci. Reports-B, vol. 8, pp. 1–19, 2023.
  • [13] J. Ebeling et al., “A Comparison of Different Matrices for the Laboratory Diagnosis of the Epizootic American Foulbrood of Honey Bees,” Vet. Sci., vol. 10, no. 2, p. 103, Feb. 2023, doi: 10.3390/vetsci10020103.
  • [14] M. Djukic et al., “Comparative Genomics and Description of Putative Virulence Factors of Melissococcus plutonius, the Causative Agent of European Foulbrood Disease in Honey Bees,” Genes (Basel)., vol. 9, no. 8, p. 419, Aug. 2018, doi: 10.3390/genes9080419.
  • [15] A. Gregorc and B. Sampson, “Diagnosis of Varroa Mite (Varroa destructor) and Sustainable Control in Honey Bee (Apis mellifera) Colonies,” Diversity, vol. 11, no. 12, p. 243, Dec. 2019, doi: 10.3390/d11120243.
  • [16] K. S. Traynor et al., “Varroa Destructor: A Complex Parasite, Crippling Honey Bees Worldwide,” Trends Parasitol., vol. 36, no. 7, pp. 592–606, Jul. 2020, doi: 10.1016/j.pt.2020.04.004.
  • [17] J. M. Flores et al., “Impact of Varroa Destructor and Associated Pathologies On the Colony Collapse Disorder Affecting Honey Bees,” Res. Vet. Sci., vol. 135, pp. 85–95, Mar. 2021, doi: 10.1016/j.rvsc.2021.01.001.
  • [18] J. Wegener et al., “Pathogenesis of Varroosis at the Level of the honey bee (Apis Mellifera) Colony,” J. Insect Physiol., vol. 91–92, pp. 1–9, Aug. 2016, doi: 10.1016/j.jinsphys.2016.06.004.
  • [19] F. Masood et al., “Evaluating Approved and Alternative Treatments Against an Oxytetracycline-Resistant Bacterium Responsible for European Foulbrood Disease in Honey Bees,” Sci. Rep., vol. 12, no. 1, p. 5906, Apr. 2022, doi: 10.1038/s41598-022-09796-4.
  • [20] A. J. Burnham, “Scientific Advances in Controlling Nosema Ceranae (Microsporidia) Infections in Honey Bees (Apis mellifera),” Front. Vet. Sci., vol. 6, Mar. 2019, doi: 10.3389/fvets.2019.00079.
  • [21] J. Belsky, D. J. Biddinger, N. Seiter, and N. K. Joshi, “Various Routes of Formulated Insecticide Mixture Whole-Body Acute Contact Toxicity to Honey Bees (Apis Mellifera),” Environ. Challenges, vol. 6, p. 100408, Jan. 2022, doi: 10.1016/j.envc.2021.100408.
  • [22] E. Halvaci, T. Kozak, M. Gül, H. Kars, R. Bayat, and F. Sen, “Journey to the Sweet World of Beekeeping : Historical Development , Honey Harvesting and Overview of Bee Products,” pp. 39–58, 2024.
  • [23] E. Genersch, J. D. Evans, and I. Fries, “Honey bee disease overview,” J. Invertebr. Pathol., vol. 103, pp. S2–S4, Jan. 2010, doi: 10.1016/j.jip.2009.07.015.
  • [24] J. D. Hitchcock, J. O. Moffett, J. J. Lackett, and J. R. Elliott, “Tylosin for Control of American Foulbrood Disease in Honey Bees134,” J. Econ. Entomol., vol. 63, no. 1, pp. 204–207, 1970, doi: 10.1093/jee/63.1.204.
  • [25] M. Ye, X. Li, F. Yang, and B. Zhou, “Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera),” J. Insect Sci., vol. 23, no. 2, pp. 1–5, 2023, doi: 10.1093/jisesa/iead013.
  • [26] J. G. Stephan, J. R. De Miranda, and E. Forsgren, “American foulbrood in a honeybee colony: Spore-symptom relationship and feedbacks,” BMC Ecol., vol. 20, no. 1, pp. 1–14, 2020, doi: 10.1186/s12898-020-00283-w.
  • [27] M. Spivak and G. S. Reuter, “Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior,” Apidologie, vol. 32, pp. 555–565, 2001.
  • [28] E. Borum, “Arıların Yavru Çürüklüğü İnfeksiyonlarında Doğru Teşhis, Mücadele ve Korunma Yöntemleri,” vol. 14, no. May, pp. 44–55, 2014.
  • [29] Ş. Ö. Uygur and A. O. Girişgin, “Bal Arısı Hastalık ve Zararlıları,” Uludağ Arıcılık Derg., vol. 8, no. 4, pp. 130–142, 2008.
  • [30] M. López-Uribe and R. Underwood, “Honey Bee Diseases: American Foulbrood,” PenneState Ext., no. 1, pp. 1–6, 2022.
  • [31] A. T. Truong et al., “Probiotic candidates for controlling Paenibacillus larvae, a causative agent of American foulbrood disease in honey bee,” BMC Microbiol., vol. 23, no. 1, pp. 1–11, 2023, doi: 10.1186/s12866-023-02902-0.
  • [32] M. Moharrami, N. Mojgani, M. Bagheri, and S. Toutiaee, “Role of Honey Bee Gut Microbiota in the Control of American Foulbrood and European Foulbrood Diseases,” Arch. Razi Inst., vol. 77, no. 4, pp. 1331–1339, 2022, doi: 10.22092/ARI.2022.358073.2146.
  • [33] E. Forsgren and A. T. Laugen, “Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies,” Apidologie, vol. 45, no. 1, pp. 10–20, 2014, doi: 10.1007/s13592-013-0225-6.
  • [34] R. M. Alonso-Salces et al., “Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review,” Apidologie, vol. 48, no. 3, pp. 387–400, 2017, doi: 10.1007/s13592-016-0483-1.
  • [35] M. Alburaki, S. K. Abban, J. D. Evans, and Y. P. Chen, “Occurrence and distribution of two bacterial brood diseases (American and European foulbrood) in US honey bee colonies and resistance to antibiotics from 2015 to 2022,” J. Apic. Res., vol. 0, no. 0, pp. 1–10, 2024, doi: 10.1080/00218839.2024.2329854.
  • [36] M. F. Feldlaufer, J. S. Pettis, J. P. Kochansky, and G. Stiles, “Lincomycin hydrochloride for the control of American foulbrood disease of honey bees,” Apidologie, vol. 32, no. 6, pp. 547–554, 2001, doi: 10.1051/apido:2001100.
  • [37] H. Hansen and C. J. Brødsgaard, “American foulbrood: A review of its biology, diagnosis and control,” Bee World, vol. 80, no. 1, pp. 5–23, 1999, doi: 10.1080/0005772X.1999.11099415.
  • [38] D. C. De Graaf et al., “Diagnosis of American foulbrood in honey bees: A synthesis and proposed analytical protocols,” Lett. Appl. Microbiol., vol. 43, no. 6, pp. 583–590, 2006, doi: 10.1111/j.1472-765X.2006.02057.x.
  • [39] B. Bąk, J. Szkoła, J. Wilk, P. Artiemjew, and J. Wilde, “In-Field Detection of American Foulbrood (AFB) by Electric Nose Using Classical Classification Techniques and Sequential Neural Networks,” Sensors, vol. 22, no. 3, p. 1148, Feb. 2022, doi: 10.3390/s22031148.
  • [40] I. Abdullah, S. R. Gary, and S. Marla, “Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor,” Apidologie, vol. 38, pp. 67–76, 2007, doi: 10.1051/apido.
  • [41] A. S. Floyd, B. M. Mott, P. Maes, D. C. Copeland, Q. S. McFrederick, and K. E. Anderson, “Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): Towards a microbiome understanding of disease susceptibility,” Insects, vol. 11, no. 9, pp. 1–16, 2020, doi: 10.3390/insects11090555.
  • [42] E. Forsgren, G. E. Budge, J. D. Charrière, and M. A. Z. Hornitzky, “Standard methods for European foulbrood research,” J. Apic. Res., vol. 52, no. 1, 2013, doi: 10.3896/IBRA.1.52.1.12.
  • [43] P. R. S. Rajamanoharan and S. Vivekanandarajah Sathasivampillai, “The role of honey in pediatric treatments in Sri Lankan Siddha medicine,” Uludag Aricilik Derg., vol. 20, no. 2, pp. 83–90, 2021, doi: 10.31467/uluaricilik.781259.
  • [44] E. Forsgren, “European foulbrood in honey bees,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S5–S9, 2010, doi: 10.1016/j.jip.2009.06.016.
  • [45] O. Lewkowski and S. Erler, “Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee,” Microbiologyopen, vol. 8, no. 3, pp. 1–9, 2019, doi: 10.1002/mbo3.649.
  • [46] M. T. Student et al., “Nevşehir İli Merkez Karşıdağ Mevkii Apis mellifera Apis mellifera (Insecta: Hymenoptera: Apıdae) Taksonu Biyoekolojisi ve Morfolojisi Üzerine Araştırma,” Front. Neurosci., vol. 14, no. 1, pp. 1–13, 2021.
  • [47] A. Wicaksana and T. Rachman, “Arı Hastalıkları,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2018.
  • [48] K. Papadopoulou-Karabela, N. Iliadis, V. Liakos, and E. Bourdzy-Hatzopoulou, “Experimental infection of honeybees by Pseudomonas aeruginosa,” Apidologie, vol. 23, no. 5, pp. 393–397, 1992, doi: 10.1051/apido:19920501.
  • [49] M. A. Kırpık and C. Kadirhan, “Bacterial Diseases of Honey Bee (Apis mellifera),” Sci. Technıque 21st Century, vol. 2, no. 3, pp. 1–18, 2015.
  • [50] Ö. Ertürk and B. Taş, “Bacterial Flora Analysis in Mud Nests of Alien Invasive Wasps (Sceliphron curvatum Smith, 1870),” Ordu Üniversitesi Bilim ve Teknol. Derg., vol. 13, no. 1, pp. 37–43, 2023, doi: 10.54370/ordubtd.1274632.
  • [51] H. Q. Zheng and Y. P. Chen, “Detection of spiroplasma melliferum in honey bee colonies in the US,” J. Invertebr. Pathol., vol. 119, pp. 47–49, 2014, doi: 10.1016/j.jip.2014.03.006.
  • [52] M. Sarwar, “Challenges due to bacterial infections of the honey bees and contributions to manage pest problems,” Int. J. Entomol. Res. Issue, vol. 1, no. 1, pp. 2455–4758, 2016.
  • [53] P. E. Lee and B. Furgala, “Electron microscopy of sacbrood virus in situ,” Virology, vol. 25, no. 3, pp. 387–392, 1965, doi: 10.1016/0042-6822(65)90059-0.
  • [54] I. Balkaya, H. Gülbaz, H. Avcioǧlu, and E. Güven, “Türkiye’de Görülen Bal Arisi (Apis mellifera) Hastaliklari,” Ataturk Univ. Vet. Bilim. Derg., vol. 11, no. 3, pp. 339–347, 2016, doi: 10.17094/ataunivbd.282993.
  • [55] M. Mingxiao, L. Ming, C. Jian, Y. Song, W. Shude, and L. Pengfei, “Molecular and biological characterization of chinese sacbrood virus LN isolate,” Comp. Funct. Genomics, vol. 2011, 2011, doi: 10.1155/2011/409386.
  • [56] P. Tuncer and K. Yeşilbağ, “Bal Arılarının Viral Hastalıkları,” Arı Bı̇lı̇mı̇ / Bee Sci., vol. 9, no. November, pp. 149–161, 2009.
  • [57] P. Blanchard et al., “Development and validation of a real-time two-step RT-qPCR TaqMan® assay for quantitation of Sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies,” J. Virol. Methods, vol. 197, pp. 7–13, 2014, doi: 10.1016/j.jviromet.2013.09.012.
  • [58] L. Baıley, “The multiplication and spread of sacbrood virus of bees,” Ann. Appl. Biol., vol. 63, no. 3, pp. 483–491, 1969, doi: 10.1111/j.1744-7348.1969.tb02844.x.
  • [59] W. F. Huang, S. Mehmood, S. Huang, Y. W. Chen, C. Y. Ko, and S. Su, “Phylogenetic analysis and survey of Apis cerana strain of Sacbrood virus (AcSBV) in Taiwan suggests a recent introduction,” J. Invertebr. Pathol., vol. 146, pp. 36–40, 2017, doi: 10.1016/j.jip.2017.04.001.
  • [60] R. C. Ghosh, B. V. Ball, M. M. Willcocks, and M. J. Carter, “The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus,” J. Gen. Virol., vol. 80, no. 6, pp. 1541–1549, 1999, doi: 10.1099/0022-1317-80-6-1541.
  • [61] L. Bailey, A. J. Gibbs, and R. D. Woods, “Sacbrood virus of the larval honey bee (Apis mellifera linnaeus),” Virology, vol. 23, no. 3, pp. 425–429, 1964, doi: 10.1016/0042-6822(64)90266-1.
  • [62] B. Arıcı, “Tokat ve Ordu İllerindeki Bal Arılarında (Apis mellifera L.) Deforme Kanat Virüsü (DWV) ve Tulumsu Yavru Çürüklüğü Virüsü (SBV) Varlığının Araştırılması,” vol. 2, no. 1, pp. 1–8, 2009.
  • [63] J. R. de Miranda, G. Cordoni, and G. Budge, “The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S30–S47, 2010, doi: 10.1016/j.jip.2009.06.014.
  • [64] J. R. de Miranda et al., “Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus,” J. Gen. Virol., vol. 85, no. 8, pp. 2263–2270, 2004, doi: 10.1099/vir.0.79990-0.
  • [65] M. F. Allen and B. V. Ball, “Characterisation and serological relationships of strains of Kashmir bee virus,” Ann. Appl. Biol., vol. 126, no. 3, pp. 471–484, 1995, doi: 10.1111/j.1744-7348.1995.tb05382.x.
  • [66] G. E. Budge et al., “Chronic bee paralysis as a serious emerging threat to honey bees,” Nat. Commun., vol. 11, no. 1, pp. 1–7, 2020, doi: 10.1038/s41467-020-15919-0.
  • [67] A. Güller, M. Usta, G. Çakar, and Z. Kurt, “Molecular characterization of Deformed wing viruses identified in honeybee (Apis mellifera L.) colonies in Erzincan province of Turkey,” Eur. J. Sci. Technol., vol. 2021, no. 27, pp. 186–192, 2021, doi: 10.31590/ejosat.951040.
  • [68] Ş. Kızıltepe, R. Akpınar, A. Akman, S. Kaya, and S. N. Çelik, “Iğdır İlinde Görülen Arı Kolonisi Kayıplarında Viral ve Paraziter Etkenlerin Rolü,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 13, no. 2, pp. 858–871, 2023, doi: 10.21597/jist.1184308.
  • [69] Y. Yıldırım, “Bal Arılarının Viral Hastalıkları,” Cukurova Univ. Agric. Fac., vol. 1, no. 35, pp. 57–66, 2020, doi: 10.36846/cjafs.2020.18.
  • [70] A. Balkaya, A. Güller, M. Usta, and Z. Kurt, “Prevalence of Deformed wing virus and Chronic bee paralysis virus in Honey Bee Colonies of Bingöl province, Turkey,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 13, no. 1, pp. 44–53, 2023, doi: 10.21597/jist.1059418.
  • [71] S. Gisder and E. Genersch, “ Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B, but Not Variant A, via Fluorescence In Situ Hybridization Analysis ,” J. Virol., vol. 95, no. 5, 2021, doi: 10.1128/jvi.01786-20.
  • [72] F. S. de Souza, M. H. Allsopp, and S. J. Martin, “Deformed wing virus prevalence and load in honeybees in South Africa,” Arch. Virol., vol. 166, no. 1, pp. 237–241, 2021, doi: 10.1007/s00705-020-04863-5.
  • [73] J. L. Kevill, K. C. Stainton, D. C. Schroeder, and S. J. Martin, “Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies,” Arch. Virol., vol. 166, no. 10, pp. 2693–2702, 2021, doi: 10.1007/s00705-021-05162-3.
  • [74] M. Gürçay and M. A. Kutlu, “Important Viruses of Honey Bees,” Int. J. Food, Agric. Anim. Sci., vol. 2, no. 2, pp. 29–41, 2022.
  • [75] S. Bhatia, S. S. Baral, C. Vega Melendez, E. Amiri, and O. Rueppell, “Comparing survival of israeli acute paralysis virus infection among stocks of U.S. honey bees,” Insects, vol. 12, no. 1, pp. 1–13, 2021, doi: 10.3390/insects12010060.
  • [76] L. Baıley, “The Epidemiology and Control of Nosema Disease of the Honey‐Bee,” Ann. Appl. Biol., vol. 43, no. 3, pp. 379–389, 1955, doi: 10.1111/j.1744-7348.1955.tb02488.x.
  • [77] Y. Chen et al., “Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees,” J. Invertebr. Pathol., vol. 101, no. 3, pp. 204–209, 2009, doi: 10.1016/j.jip.2009.05.012.
  • [78] R. Galajda, A. Valenčáková, M. Sučik, and P. Kandráčová, “Nosema disease of european honey bees,” J. Fungi, vol. 7, no. 9, 2021, doi: 10.3390/jof7090714.
  • [79] D. L. Miller, E. A. Smith, and I. L. G. Newton, “A bacterial symbiont protects honey bees from fungal disease,” MBio, vol. 12, no. 3, pp. 2–7, 2021, doi: 10.1128/mBio.00503-21.
  • [80] I. Fries, “Nosema Apis- A Parasite in the Honey Bee Colony,” Bee World, vol. 74, no. 1, pp. 5–19, 1993, doi: 10.1080/0005772X.1993.11099149.
  • [81] H. S. Abdulhay and M. I. Yonius, “Effects of diseases and pests on honey bee (Apis mellifera) in different parts in Baghdad city, Iraq,” Plant Arch., vol. 20, pp. 220–223, 2020.
  • [82] I. Fries et al., “Standard methods for Nosema research,” J. Apic. Res., vol. 52, no. 1, pp. 1–28, 2013, doi: 10.3896/IBRA.1.52.1.14.
  • [83] D. Y. Kim et al., “The Ascosphaera Apis Infection (Chalkbrood Disease) Alters the Gut Bacteriome Composition of the Honeybee,” Pathogens, vol. 12, no. 5, p. 734, May 2023, doi: 10.3390/pathogens12050734.
  • [84] İ. Seven and P. Tatlı Seven, “Teknik Arıcılıkta Kritik Bakım ve Besleme Uygulamaları,” Fırat Üniversitesi Sağlık Bilim. Vet. Derg., vol. 32, no. 2, pp. 147–154, 2018.
  • [85] A. Zerek, “Hatay İli Arıcılık İşletmelerinde Nosema ve Amoeba Enfeksiyonlarının Yaygınlığı,” Turkısh J. Agrıcultural Nat. Scıences, vol. 9, no. 4, pp. 976–981, 2022.
  • [86] D. R. Kugonza, “Africa under attack: a continent-wide mapping of pathogens, parasites and predators afflicting the hived honey bee Apis mellifera L.(Hymenoptera: Apidae),” African J. Rural Dev., vol. 5, no. 2, pp. 1–27, 2021.
  • [87] M. Rossi, S. R. Ott, and J. E. Niven, “Malpighamoeba infection compromises fluid secretion and P-glycoprotein detoxification in Malpighian tubules,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-72598-z.
  • [88] N. Şahinler and A. Gül, “Investigation of Bee Diseases in Beekeeping Enterpricese in Hatay Province,” Uludağ Bee J., vol. 1, no. 5, pp. 27–31, 2005.
  • [89] H. Şimşek, “Elazığ Yöresi Bal Arularında Bazı Parazit ve Mantar Hastalıklarının Araştırılması,” pp. 123–126, 2005.
  • [90] A. E. Borum and M. Ülgen, “Güney Marmara Bölgesinde Bal Arılarının Chalkbrood (Ascosphaera Apis) İnfeksiyonunda Predispozisyon Faktörleri Predisposing Factors for Chalkbrood (Ascosphaera apis) Infection in Honey Bees in Northwest Turkey,” Arı Bı̇lı̇mı̇ / Bee Sci., vol. 10, no. May, pp. 56–69, 2010.
  • [91] K. A. Aronstein and K. D. Murray, “Chalkbrood disease in honey bees,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S20–S29, 2010, doi: 10.1016/j.jip.2009.06.018.
  • [92] U. Lermi, “Bartın Yöresi Bal Arısı (Apis Mellifera L.) Zararlıları ve Hastalıkları,” vol. 2, no. 5, pp. 1–179, 2010.
  • [93] A. B. Jensen, K. Aronstein, J. M. Flores, S. Vojvodic, M. A. Palacio, and M. Spivak, “Standard methods for fungal brood disease research,” J. Apic. Res., vol. 52, no. 1, 2013, doi: 10.3896/IBRA.1.52.1.13.
  • [94] J. B. Benoit, J. A. Yoder, D. Sammataro, and L. W. Zettler, “Mycoflora and fungal vector capacity of the parasitic mite varroa destructor (mesostigmata: Varroidae) in honey bee (hymenoptera: Apidae) colonies,” Int. J. Acarol., vol. 30, no. 2, pp. 103–106, 2004, doi:10.1080/01647950408684376.
  • [95] A. M. Shehabeldine, A. H. Hashem, and A. I. Hasaballah, “Antagonistic effect of gut microbiota of the Egyptian honeybees, Apis mellifera L. against the etiological agent of Stonebrood disease,” Int. J. Trop. Insect Sci., vol. 42, no. 2, pp. 1357–1366, 2022, doi: 10.1007/s42690-021-00654-w.
  • [96] K. Foley, G. Fazio, A. B. Jensen, and W. O. H. Hughes, “The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees,” Vet. Microbiol., vol. 169, no. 3–4, pp. 203–210, 2014, doi: 10.1016/j.vetmic.2013.11.029.
  • [97] M. N. Shoreit and M. M. K. Bagy, “Mycoflora associated with stonebrood disease in honeybee colonies in Egypt,” Microbiol. Res., vol. 150, no. 2, pp. 207–211, 1995, doi: 10.1016/S0944-5013(11)80058-3.
  • [98] A. Alizadeh and M. S. Mossadegh, “Stonebrood and some other fungi associated with Apis florea in iran,” J. Apic. Res., vol. 33, no. 4, pp. 213–218, 1994, doi: 10.1080/00218839.1994.11100874.
  • [99] S. Vojvodic, A. B. Jensen, R. R. James, J. J. Boomsma, and J. Eilenberg, “Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood,” Vet. Microbiol., vol. 149, no. 1–2, pp. 200–205, 2011, doi: 10.1016/j.vetmic.2010.10.001.
  • [100] A. Noël, Y. Le Conte, and F. Mondet, “Varroa destructor: How does it harm Apis mellifera honey bees and what can be done about it?,” Emerg. Top. Life Sci., vol. 4, no. 1, pp. 45–57, 2020, doi: 10.1042/ETLS20190125.
  • [101] J. Dittes, H. Aupperle-Lellbach, M. O. Schäfer, C. K. W. Mülling, and I. U. Emmerich, “Veterinary Diagnostic Approach of Common Virus Diseases in Adult Honeybees,” Vet. Sci., vol. 7, no. 4, p. 159, Oct. 2020, doi: 10.3390/vetsci7040159.
  • [102] A. J. Mohammed, K. Abdul, and R. Fhad, “Evaluation Of Oils And Extracts Of Some Natural Materials In The Management Of Varroa Jacobsoni Oudemans Mites On Apis Mellifera Honey Bees In Basrah Province,” Volatiles Essent. Oils, vol. 9, no. 1, pp. 561–574, 2022.
  • [103] L. Aydin, “Aethina tumida (Small Hive Beetle; SHB) and Tropilaelaps spp. Mite; an emerging threat to Turkey Honey Bees,” Ankara Univ. Vet. Fak. Derg., vol. 69, no. 3, pp. 347–354, 2022, doi: 10.33988/auvfd.1019154.
  • [104] A. O. Girişgin, L. Aydin, and Y. E. Yörük, “Hypothetical study of Small Hive Beetle Aethina tumida Infestation in Honeybees, Risk Commodities and Probabilities for Its Introduction in Türkiye,” Kafkas Univ. Vet. Fak. Derg., vol. 28, no. 6, pp. 733–737, 2022, doi: 10.9775/kvfd.2022.28027.
  • [105] A. Nanetti, J. D. Ellis, I. Cardaio, and G. Cilia, “Detection of lotmaria passim, crithidia mellificae and replicative forms of deformed wing virus and kashmir bee virus in the small hive beetle (Aethina tumida),” Pathogens, vol. 10, no. 3, 2021, doi: 10.3390/pathogens10030372.
  • [106] Z. A. Jamal et al., “Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm,” J. King Saud Univ. - Sci., vol. 33, no. 1, p. 101242, 2021, doi: 10.1016/j.jksus.2020.101242.
  • [107] P. Neumann, J. S. Pettis, and M. O. Schäfer, “Quo vadis Aethina tumida? Biology and control of small hive beetles,” Apidologie, vol. 47, no. 3, pp. 427–466, 2016, doi: 10.1007/s13592-016-0426-x.
  • [108] H. Hernández Torres, A. Georgievich Kirejtshuk, C. Núñez Vázquez, and O. García Martínez, “On Aethina tumida Murray (Coleoptera: Nitidulidae: Nitidulinae) in hives of Apis mellifera Linnaeus (Hymenoptera: Apidae) in Campeche, México,” J. Apic. Res., vol. 62, no. 2, pp. 326–329, 2023, doi: 10.1080/00218839.2021.1889223.
  • [109] A. Karahan, M. A. Kutlu, E. Zengin, and İ. Karaca, “Awareness of Beekeepers About the Small Hive Beetle [ Aethina tumida ( Murray , 1867 ) ( Coleoptera : Nitidulidae )], Which is A Threat to Beekeeping in Turkey,” BinBee Arı ve Doğal Ürünler Derg., vol. 1, no. January, pp. 19–28, 2022.
  • [110] L. Wu, L. Li, Y. Xu, Q. Li, F. Liu, and H. Zhao, “Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida,” Pest Manag. Sci., vol. 79, no. 1, pp. 37–44, 2023, doi: 10.1002/ps.7146.
  • [111] G. F. de Landa et al., “Pathogens Detection in the Small Hive Beetle (Aethina tumida (Coleoptera: Nitidulidae)),” Neotrop. Entomol., vol. 50, no. 2, pp. 312–316, 2021, doi: 10.1007/s13744-020-00812-8.
  • [112] A. C. Croce and F. Scolari, “Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior,” Molecules, vol. 27, no. 14, pp. 1–27, 2022, doi: 10.3390/molecules27144458.
  • [113] M. M. Keshlaf, H. B. Mirwan, S. Ghana, S. Mubrok, and T. Shaibi, “Prevalence of Varroa mites (Varroa destructor Anderson & Trueman) and bee lice (Bruala coeca Nitzsch) in honey bee (Apis mellifera L.) colonies in Libya,” Open Vet. J., vol. 13, no. 7, pp. 834–838, 2023, doi: 10.5455/OVJ.2023.v13.i7.4.
  • [114] K. Gratzer, K. Wakjira, S. Fiedler, and R. Brodschneider, “Challenges and perspectives for beekeeping in Ethiopia,” Agron. Sustain. Dev., vol. 41, no. 4, pp. 2–10, 2021, doi: 10.1007/s13593-021-00702-2.
  • [115] T. H. Büscher et al., “The exceptional attachment ability of the ectoparasitic bee louse Braula coeca (Diptera, Braulidae) on the honeybee,” Physiol. Entomol., vol. 47, no. 2, pp. 83–95, 2022, doi: 10.1111/phen.12378.
  • [116] M. Z. Sharif, X. Jiang, and S. M. Puswal, “Pests, parasitoids, and predators: Can they degrade the sociality of a honeybee colony, and be assessed via acoustically monitored systems,” J. Entomol. …, vol. 8, no. 3, pp. 1248–1260, 2020.
  • [117] M. Pietropaoli et al., “Molecular Detection of Acarapis woodi Using Hive Debris as Innovative and Non-Invasive Matrix,” Appl. Sci., vol. 12, no. 6, pp. 10–14, 2022, doi: 10.3390/app12062837.
  • [118] Y. Sakamoto, T. Maeda, M. Yoshiyama, F. Konno, and J. S. Pettis, “Differential autogrooming response to the tracheal mite Acarapis woodi by the honey bees Apis cerana and Apis mellifera,” Insectes Soc., vol. 67, no. 1, pp. 95–102, 2020, doi: 10.1007/s00040-019-00732-w.
  • [119] C. M. Peixoto, M. E. Correia-Oliveira, and C. A. L. De Carvalho, “Current Status of Acarapis woodi Mite Infestation in Africanized Honey Bee Apis mellifera in Brazil,” Florida Entomol., vol. 102, no. 4, pp. 775–777, 2019, doi: 10.1653/024.102.0416.
  • [120] V. V Stolbova, “Current state of Acarapis Hirst mites (Acariformes, Tarsonemidae) distribution and honeybees infestation in Russia,” Ukr. J. Ecol., vol. 11, no. 1, pp. 291–298, 2021, doi: 10.15421/2021.
  • [121] S. Takashima, Y. Ohari, and T. Itagaki, “The prevalence and molecular characterization of Acarapis woodi and Varroa destructor mites in honeybees in the Tohoku region of Japan,” Parasitol. Int., vol. 75, no. December 2019, p. 102052, 2020, doi: 10.1016/j.parint.2020.102052.
  • [122] I. Serrano, C. Verdial, L. Tavares, and M. Oliveira, “The Virtuous Galleria mellonella Model for Scientific Experimentation,” Antibiotics, vol. 12, no. 3, pp. 1–25, 2023, doi: 10.3390/antibiotics12030505.
  • [123] S. S. Saikia, B. K. Borah, G. Baruah, Rokozeno, and M. K. Deka, “Characterization of the gut microbes of greater wax moth (Galleria mellonella Linnaeus) shows presence of potential polymer degraders,” Folia Microbiol. (Praha)., vol. 67, no. 1, pp. 133–141, 2022, doi: 10.1007/s12223-021-00925-6.
  • [124] E. Özgör, “The effects of nosema apis and nosema ceranae infection on survival and phenoloxidase gene expression in galleria mellonella (Lepidoptera: Galleriidae) compared to apis mellifera,” Insects, vol. 12, no. 10, 2021, doi: 10.3390/insects12100953.
  • [125] E. M. Hosni, A. A. Al-Khalaf, M. G. Nasser, H. F. Abou-Shaara, and M. H. Radwan, “Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate,” Insects, vol. 13, no. 5, 2022, doi: 10.3390/insects13050484.
  • [126] A. A. Egelie, A. N. Mortensen, L. Barber, J. Sullivan, and J. D. Ellis, “Lesser Wax Moth Achroia grisella Fabricius (Insecta: Lepidoptera: Pyralidae),” Entomol. Nematol. Univ. Florida, pp. 1–4, 2015.
  • [127] Y. Liu, G. Li, and J. Long, “The complete mitochondrial genome of small wax moth, Achroia grisella (Pyralidae: Galleriinae),” Mitochondrial DNA Part B Resour., vol. 7, no. 5, pp. 738–740, 2022, doi: 10.1080/23802359.2022.2068984.
  • [128] L. Díaz-García, A. Reid, J. Jackson-Camargo, and J. Windmill, “Directional passive acoustic structures inspired by the ear of Achroia grisella,” Proc. Meet. Acoust., vol. 50, no. 1, pp. 1–3, 2022, doi: 10.1121/2.0001715.
  • [129] Chandresh B. Solanki, Birari Vaishali V., Manishkumar J. Joshi, and Prithiv Raj V., “Enemies of Honey bees and their Management,” Agric. FOOD e-Newsletter , vol. 2, no. 4, pp. 56–58, 2020.
  • [130] P. Sabatina, G. Umapathy, and P. A. Saravanan, “Parasıtısatıon Potentıal Of Egg And Larval Parasıtoıds Agaınst Lesser Wax Moth Achroia grisella F. (Lepıdoptera: Pyralıdae) Under Stored Condıtıon,” Uludag Aricilik Derg., vol. 23, no. 2, pp. 215–223, 2023, doi: 10.31467/uluaricilik.1353063.
  • [131] E. A. Wallin, B. Kalinová, J. Kindl, E. Hedenström, and I. Valterová, “Stereochemistry of two pheromonal components of the bumblebee wax moth, Aphomia sociella,” Sci. Rep., vol. 10, no. 1, pp. 1–7, 2020, doi: 10.1038/s41598-020-59069-1.
  • [132] H. K. Sharma et al., “Seasonal incidence, epidemiology and establishment of different pests and disease in laboratory reared Bombus haemorrhoidalis Smith,” Int. J. Trop. Insect Sci., vol. 41, no. 4, pp. 2555–2564, 2021, doi: 10.1007/s42690-021-00435-5.
  • [133] S. E. Schweiger, N. Beyer, A. L. Hass, and C. Westphal, “Pollen and landscape diversity as well as wax moth depredation determine reproductive success of bumblebees in agricultural landscapes,” Agric. Ecosyst. Environ., vol. 326, no. April 2021, p. 107788, 2022, doi: 10.1016/j.agee.2021.107788.
  • [134] L. Aydın and S. Özgür, “Bal Arılarında Bulunan Az Önemli Zararlı Artropodlar (Eklembacaklılar),” Uludağ Arıcılık Derg., vol. 12, no. May, pp. 40–54, 2012.
  • [135] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [136] F. Karimi et al., “Efficient green photocatalyst of silver-based palladium nanoparticles for methyle orange photodegradation, investigation of lipid peroxidation inhibition, antimicrobial, and antioxidant activity,” Food Chem. Toxicol., vol. 169, p. 113406, Nov. 2022, doi: 10.1016/j.fct.2022.113406.
  • [137] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [138] R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors Int., vol. 2, p. 100089, 2021, doi: 10.1016/j.sintl.2021.100089.
  • [139] Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [140] K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132720.
  • [141] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater. Chem. Phys., vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • [142] E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures & Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.018.
  • [143] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric sensor based on biogenic nanomaterials for high sensitive detection of hydrogen peroxide and multi-metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [144] B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, and F. Sen, “Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23299–23306, Sep. 2017, doi: 10.1016/j.ijhydene.2017.04.213.
  • [145] “Front Matter,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. i–ii. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [146] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, 2016, doi: 10.1039/C5CY01462J.
  • [147] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [148] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [149] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [150] F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/nn303716n.
  • [151] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [152] B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [153] B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, p. 12258, Aug. 2019, doi: 10.1038/s41598-019-48802-0.
  • [154] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [155] B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Corrigendum to ‘Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction’ [Int J Hydrogen Energy 43 (2018) 20183–20191],” Int. J. Hydrogen Energy, vol. 46, no. 39, p. 20792, Jun. 2021, doi: 10.1016/j.ijhydene.2021.04.166.
  • [156] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [157] F. Şen and G. Gökağaç, “Pt Nanoparticles Synthesized With New Surfactants: Improvement in C1–C3 Alcohol Oxidation Catalytic Activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • [158] F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • [159] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A Superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [160] R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
  • [161] M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced Electrochemical Performance of MnNi 2 O 4 /rGO Nanocomposite as Pseudocapacitor Electrode Material and Methanol Electro Oxidation Catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • [162] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/slct.201601632.
  • [163] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-Nanotube-Based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [164] P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • [165] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [166] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • [167] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [168] B. Şahin et al., “Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line,” Colloids Surfaces B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [169] N. Korkmaz et al., “Biogenic Silver Nanoparticles Synthesized Via Mimusops Elengi Fruit Extract, a Study on Antibiofilm, Antibacterial, and Anticancer Activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [170] F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green Synthesis of Palladium Nanoparticles: Preparation, Characterization, and Investigation of Antioxidant, Antimicrobial, Anticancer, and DNA Cleavage Activities,” Appl. Organomet. Chem., vol. 35, no. 8, Aug. 2021, doi: 10.1002/aoc.6272.
  • [171] R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi:10.1016/J.ENVRES.2021.112622.
  • [172] W. J. M. Steyn, “Potential applications of nanotechnology in pavement engineering,” J. Transp. Eng., vol. 135, no. 10, pp. 764–772, 2009, doi: 10.1061/(ASCE)0733-947X(2009)135:10(764).
  • [173] R. Hussain et al., “Nano-managing silver and zinc as bio-conservational approach against pathogens of the honey bee,” J. Biotechnol., vol. 365, pp. 1–10, Mar. 2023, doi: 10.1016/j.jbiotec.2023.01.009.
  • [174] S. El-Sayied Ali et al., “Exploring bee venom and silver nanoparticles for controlling foulbrood pathogen and enhancing lifespan of honeybees,” Sci. Rep., vol. 14, no. 1, p. 19013, Aug. 2024, doi: 10.1038/s41598-024-67515-7.

Arı Hastalıkları ve Tedavi Yöntemleri

Year 2025, Issue: 009, 28 - 54, 30.04.2025

Abstract

Arı hastalıkları, arıcılık faaliyetleri ile ilgili temel sorunlardan biridir. Parazitler, bakteriler, virüsler ve mantarlar gibi zararlı mikroorganizmalar bal arılarının yavru ve ergin dönemlerinde hastalıklara neden olmaktadır. Bu hastalık etmenleri çeşitli yollarla koloniye girmekte ve koloniden koloniye, arılıktan arılığa ve bölgeden bölgeye hızla yayılmaktadır. Bu nedenle arı hastalıkları, arıcılık faaliyetlerini olumsuz etkileyen, koloni kayıplarına neden olan ve üretim verimliliğini sınırlayan başlıca sorunlardır. Arı hastalıklarında sulu dışkı, susuzluk, dinlenme sırasında titreme, alışılmadık kanat açıları, kronik dönemde arıların huzursuz davranışları ve vücut fizyolojisinde değişiklikler gibi belirtiler görülmektedir. Bu belirtiler çoğunlukla ilkbaharda ortaya çıkmaktadır. Ancak hastalık yaz döneminde kovanı baskı altına almaktadır. Bu nedenle kovandaki sorunları en aza indirmek için hastalıkların kontrol altına alınması ve mücadele yöntemlerinin geliştirilmesine ihtiyaç vardır. İlkbahar ve sonbahar dönemlerinde koloniler doğru gözlemlenmeli ve güçlendirme çalışmaları yapılmalıdır. Hasta kolonilerin tedavi edildikten sonra dezenfekte edilmiş kovanlara taşınması önerilmektedir. Bunun nedeni, yaz döneminde kuluçka gelişiminin durmasına izin vermeden koloniyi kış dönemine hazırlamaktır. Arıcıların bu alanda bilinçlendirildiğini, doğru tedavi yöntemlerinin uygulandığını ve ilgili kaynaklara ulaşabildiklerini söylemek çok zordur. Mevcut bazı tedavi yöntemleri ve ilaçların arı hastalıkları için doğrudan çözüm olmadığı görülmektedir. Bu nedenle bu derlemede koloni kayıplarına neden olabilen arı hastalık ve zararlıları detaylı olarak ele alınmıştır. Bu hastalıklar temel olarak 'bakteriyel', 'viral', 'protozoal' ve 'diğer koloni zararlıları' olarak sınıflandırılmıştır. Ayrıca, arı hastalıkları için geleneksel ve yeni teknolojik tedavi yöntemlerinden de kısaca bahsedilmektedir.

References

  • [1] S. Nekoei, M. Rezvan, F. Khamesipour, C. Mayack, M. B. Molento, and P. D. Revainera, “A Systematic Review of Honey Bee İnfections and Available Treatment Options,” Vet. Med. Sci., vol. 9, no. 4, pp. 1848–1860, Jul. 2023, doi: 10.1002/vms3.1194.
  • [2] B. Olas, “Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases,” Nutrients, vol. 14, no. 11, p. 2267, May 2022, doi: 10.3390/nu14112267.
  • [3] E. Amiri, M. Strand, O. Rueppell, and D. Tarpy, “Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health,” Insects, vol. 8, no. 2, p. 48, May 2017, doi: 10.3390/insects8020048.
  • [4] H. Kim, S.-Y. Park, and G. Lee, “Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature Review,” Toxins (Basel)., vol. 11, no. 7, p. 374, Jun. 2019, doi: 10.3390/toxins11070374.
  • [5] J. Ebeling, A. Fünfhaus, and S. Gisder, “Special Issue: Honey Bee Pathogens and Parasites,” Vet. Sci., vol. 9, no. 10, p. 515, Sep. 2022, doi: 10.3390/vetsci9100515.
  • [6] H. Tutun, N. Koç, and A. Kart, “Plant Essential Oils Used Against Some Bee Diseases,” Turkish J. Agric. - Food Sci. Technol., vol. 6, no. 1, pp. 34–45, Feb. 2018, doi: 10.24925/turjaf.v6i1.34-45.1502.
  • [7] P. J. Marín-García, Y. Peyre, A. E. Ahuir-Baraja, M. M. Garijo, and L. Llobat, “The Role of Nosema Ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment,” Vet. Sci., vol. 9, no. 3, p. 130, Mar. 2022, doi: 10.3390/vetsci9030130.
  • [8] M. Goblirsch, “Nosema Ceranae Disease of the Honey Bee (Apis Mellifera),” Apidologie, vol. 49, no. 1, pp. 131–150, Feb. 2018, doi: 10.1007/s13592-017-0535-1.
  • [9] A. G. .Dolezal and A. L. Toth, “Feedbacks Between Nutrition and Disease in Honey Bee Health,” Curr. Opin. Insect Sci., vol. 26, pp. 114–119, Apr. 2018, doi: 10.1016/j.cois.2018.02.006.
  • [10] M. Sarwar, “Fungal Diseases of Honey Bees ( Hymenoptera : Apidae ) That Induce Considerable Losses to Colonies and Protocol for Treatment,” Int. J. Zool. Stud., vol. 1, no. 1, pp. 8–13, 2016.
  • [11] K. Kuzyšinová, D. Mudroňová, J. Toporčák, L. Molnár, and P. Javorský, “The Use of Probiotics, Essential Oils and Fatty Acids in the Control of American Foulbrood and Other Bee Diseases,” J. Apic. Res., vol. 55, no. 5, pp. 386–395, Dec. 2016, doi: 10.1080/00218839.2016.1252067.
  • [12] E. Halvaci, T. Kozak, M. Gül, H. Kars, and F. Şen, “Bee Anatomy: A Comprehensive Overview of Bee Morphology and Physiology,” / J. Sci. Reports-B, vol. 8, pp. 1–19, 2023.
  • [13] J. Ebeling et al., “A Comparison of Different Matrices for the Laboratory Diagnosis of the Epizootic American Foulbrood of Honey Bees,” Vet. Sci., vol. 10, no. 2, p. 103, Feb. 2023, doi: 10.3390/vetsci10020103.
  • [14] M. Djukic et al., “Comparative Genomics and Description of Putative Virulence Factors of Melissococcus plutonius, the Causative Agent of European Foulbrood Disease in Honey Bees,” Genes (Basel)., vol. 9, no. 8, p. 419, Aug. 2018, doi: 10.3390/genes9080419.
  • [15] A. Gregorc and B. Sampson, “Diagnosis of Varroa Mite (Varroa destructor) and Sustainable Control in Honey Bee (Apis mellifera) Colonies,” Diversity, vol. 11, no. 12, p. 243, Dec. 2019, doi: 10.3390/d11120243.
  • [16] K. S. Traynor et al., “Varroa Destructor: A Complex Parasite, Crippling Honey Bees Worldwide,” Trends Parasitol., vol. 36, no. 7, pp. 592–606, Jul. 2020, doi: 10.1016/j.pt.2020.04.004.
  • [17] J. M. Flores et al., “Impact of Varroa Destructor and Associated Pathologies On the Colony Collapse Disorder Affecting Honey Bees,” Res. Vet. Sci., vol. 135, pp. 85–95, Mar. 2021, doi: 10.1016/j.rvsc.2021.01.001.
  • [18] J. Wegener et al., “Pathogenesis of Varroosis at the Level of the honey bee (Apis Mellifera) Colony,” J. Insect Physiol., vol. 91–92, pp. 1–9, Aug. 2016, doi: 10.1016/j.jinsphys.2016.06.004.
  • [19] F. Masood et al., “Evaluating Approved and Alternative Treatments Against an Oxytetracycline-Resistant Bacterium Responsible for European Foulbrood Disease in Honey Bees,” Sci. Rep., vol. 12, no. 1, p. 5906, Apr. 2022, doi: 10.1038/s41598-022-09796-4.
  • [20] A. J. Burnham, “Scientific Advances in Controlling Nosema Ceranae (Microsporidia) Infections in Honey Bees (Apis mellifera),” Front. Vet. Sci., vol. 6, Mar. 2019, doi: 10.3389/fvets.2019.00079.
  • [21] J. Belsky, D. J. Biddinger, N. Seiter, and N. K. Joshi, “Various Routes of Formulated Insecticide Mixture Whole-Body Acute Contact Toxicity to Honey Bees (Apis Mellifera),” Environ. Challenges, vol. 6, p. 100408, Jan. 2022, doi: 10.1016/j.envc.2021.100408.
  • [22] E. Halvaci, T. Kozak, M. Gül, H. Kars, R. Bayat, and F. Sen, “Journey to the Sweet World of Beekeeping : Historical Development , Honey Harvesting and Overview of Bee Products,” pp. 39–58, 2024.
  • [23] E. Genersch, J. D. Evans, and I. Fries, “Honey bee disease overview,” J. Invertebr. Pathol., vol. 103, pp. S2–S4, Jan. 2010, doi: 10.1016/j.jip.2009.07.015.
  • [24] J. D. Hitchcock, J. O. Moffett, J. J. Lackett, and J. R. Elliott, “Tylosin for Control of American Foulbrood Disease in Honey Bees134,” J. Econ. Entomol., vol. 63, no. 1, pp. 204–207, 1970, doi: 10.1093/jee/63.1.204.
  • [25] M. Ye, X. Li, F. Yang, and B. Zhou, “Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera),” J. Insect Sci., vol. 23, no. 2, pp. 1–5, 2023, doi: 10.1093/jisesa/iead013.
  • [26] J. G. Stephan, J. R. De Miranda, and E. Forsgren, “American foulbrood in a honeybee colony: Spore-symptom relationship and feedbacks,” BMC Ecol., vol. 20, no. 1, pp. 1–14, 2020, doi: 10.1186/s12898-020-00283-w.
  • [27] M. Spivak and G. S. Reuter, “Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior,” Apidologie, vol. 32, pp. 555–565, 2001.
  • [28] E. Borum, “Arıların Yavru Çürüklüğü İnfeksiyonlarında Doğru Teşhis, Mücadele ve Korunma Yöntemleri,” vol. 14, no. May, pp. 44–55, 2014.
  • [29] Ş. Ö. Uygur and A. O. Girişgin, “Bal Arısı Hastalık ve Zararlıları,” Uludağ Arıcılık Derg., vol. 8, no. 4, pp. 130–142, 2008.
  • [30] M. López-Uribe and R. Underwood, “Honey Bee Diseases: American Foulbrood,” PenneState Ext., no. 1, pp. 1–6, 2022.
  • [31] A. T. Truong et al., “Probiotic candidates for controlling Paenibacillus larvae, a causative agent of American foulbrood disease in honey bee,” BMC Microbiol., vol. 23, no. 1, pp. 1–11, 2023, doi: 10.1186/s12866-023-02902-0.
  • [32] M. Moharrami, N. Mojgani, M. Bagheri, and S. Toutiaee, “Role of Honey Bee Gut Microbiota in the Control of American Foulbrood and European Foulbrood Diseases,” Arch. Razi Inst., vol. 77, no. 4, pp. 1331–1339, 2022, doi: 10.22092/ARI.2022.358073.2146.
  • [33] E. Forsgren and A. T. Laugen, “Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies,” Apidologie, vol. 45, no. 1, pp. 10–20, 2014, doi: 10.1007/s13592-013-0225-6.
  • [34] R. M. Alonso-Salces et al., “Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review,” Apidologie, vol. 48, no. 3, pp. 387–400, 2017, doi: 10.1007/s13592-016-0483-1.
  • [35] M. Alburaki, S. K. Abban, J. D. Evans, and Y. P. Chen, “Occurrence and distribution of two bacterial brood diseases (American and European foulbrood) in US honey bee colonies and resistance to antibiotics from 2015 to 2022,” J. Apic. Res., vol. 0, no. 0, pp. 1–10, 2024, doi: 10.1080/00218839.2024.2329854.
  • [36] M. F. Feldlaufer, J. S. Pettis, J. P. Kochansky, and G. Stiles, “Lincomycin hydrochloride for the control of American foulbrood disease of honey bees,” Apidologie, vol. 32, no. 6, pp. 547–554, 2001, doi: 10.1051/apido:2001100.
  • [37] H. Hansen and C. J. Brødsgaard, “American foulbrood: A review of its biology, diagnosis and control,” Bee World, vol. 80, no. 1, pp. 5–23, 1999, doi: 10.1080/0005772X.1999.11099415.
  • [38] D. C. De Graaf et al., “Diagnosis of American foulbrood in honey bees: A synthesis and proposed analytical protocols,” Lett. Appl. Microbiol., vol. 43, no. 6, pp. 583–590, 2006, doi: 10.1111/j.1472-765X.2006.02057.x.
  • [39] B. Bąk, J. Szkoła, J. Wilk, P. Artiemjew, and J. Wilde, “In-Field Detection of American Foulbrood (AFB) by Electric Nose Using Classical Classification Techniques and Sequential Neural Networks,” Sensors, vol. 22, no. 3, p. 1148, Feb. 2022, doi: 10.3390/s22031148.
  • [40] I. Abdullah, S. R. Gary, and S. Marla, “Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor,” Apidologie, vol. 38, pp. 67–76, 2007, doi: 10.1051/apido.
  • [41] A. S. Floyd, B. M. Mott, P. Maes, D. C. Copeland, Q. S. McFrederick, and K. E. Anderson, “Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): Towards a microbiome understanding of disease susceptibility,” Insects, vol. 11, no. 9, pp. 1–16, 2020, doi: 10.3390/insects11090555.
  • [42] E. Forsgren, G. E. Budge, J. D. Charrière, and M. A. Z. Hornitzky, “Standard methods for European foulbrood research,” J. Apic. Res., vol. 52, no. 1, 2013, doi: 10.3896/IBRA.1.52.1.12.
  • [43] P. R. S. Rajamanoharan and S. Vivekanandarajah Sathasivampillai, “The role of honey in pediatric treatments in Sri Lankan Siddha medicine,” Uludag Aricilik Derg., vol. 20, no. 2, pp. 83–90, 2021, doi: 10.31467/uluaricilik.781259.
  • [44] E. Forsgren, “European foulbrood in honey bees,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S5–S9, 2010, doi: 10.1016/j.jip.2009.06.016.
  • [45] O. Lewkowski and S. Erler, “Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee,” Microbiologyopen, vol. 8, no. 3, pp. 1–9, 2019, doi: 10.1002/mbo3.649.
  • [46] M. T. Student et al., “Nevşehir İli Merkez Karşıdağ Mevkii Apis mellifera Apis mellifera (Insecta: Hymenoptera: Apıdae) Taksonu Biyoekolojisi ve Morfolojisi Üzerine Araştırma,” Front. Neurosci., vol. 14, no. 1, pp. 1–13, 2021.
  • [47] A. Wicaksana and T. Rachman, “Arı Hastalıkları,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2018.
  • [48] K. Papadopoulou-Karabela, N. Iliadis, V. Liakos, and E. Bourdzy-Hatzopoulou, “Experimental infection of honeybees by Pseudomonas aeruginosa,” Apidologie, vol. 23, no. 5, pp. 393–397, 1992, doi: 10.1051/apido:19920501.
  • [49] M. A. Kırpık and C. Kadirhan, “Bacterial Diseases of Honey Bee (Apis mellifera),” Sci. Technıque 21st Century, vol. 2, no. 3, pp. 1–18, 2015.
  • [50] Ö. Ertürk and B. Taş, “Bacterial Flora Analysis in Mud Nests of Alien Invasive Wasps (Sceliphron curvatum Smith, 1870),” Ordu Üniversitesi Bilim ve Teknol. Derg., vol. 13, no. 1, pp. 37–43, 2023, doi: 10.54370/ordubtd.1274632.
  • [51] H. Q. Zheng and Y. P. Chen, “Detection of spiroplasma melliferum in honey bee colonies in the US,” J. Invertebr. Pathol., vol. 119, pp. 47–49, 2014, doi: 10.1016/j.jip.2014.03.006.
  • [52] M. Sarwar, “Challenges due to bacterial infections of the honey bees and contributions to manage pest problems,” Int. J. Entomol. Res. Issue, vol. 1, no. 1, pp. 2455–4758, 2016.
  • [53] P. E. Lee and B. Furgala, “Electron microscopy of sacbrood virus in situ,” Virology, vol. 25, no. 3, pp. 387–392, 1965, doi: 10.1016/0042-6822(65)90059-0.
  • [54] I. Balkaya, H. Gülbaz, H. Avcioǧlu, and E. Güven, “Türkiye’de Görülen Bal Arisi (Apis mellifera) Hastaliklari,” Ataturk Univ. Vet. Bilim. Derg., vol. 11, no. 3, pp. 339–347, 2016, doi: 10.17094/ataunivbd.282993.
  • [55] M. Mingxiao, L. Ming, C. Jian, Y. Song, W. Shude, and L. Pengfei, “Molecular and biological characterization of chinese sacbrood virus LN isolate,” Comp. Funct. Genomics, vol. 2011, 2011, doi: 10.1155/2011/409386.
  • [56] P. Tuncer and K. Yeşilbağ, “Bal Arılarının Viral Hastalıkları,” Arı Bı̇lı̇mı̇ / Bee Sci., vol. 9, no. November, pp. 149–161, 2009.
  • [57] P. Blanchard et al., “Development and validation of a real-time two-step RT-qPCR TaqMan® assay for quantitation of Sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies,” J. Virol. Methods, vol. 197, pp. 7–13, 2014, doi: 10.1016/j.jviromet.2013.09.012.
  • [58] L. Baıley, “The multiplication and spread of sacbrood virus of bees,” Ann. Appl. Biol., vol. 63, no. 3, pp. 483–491, 1969, doi: 10.1111/j.1744-7348.1969.tb02844.x.
  • [59] W. F. Huang, S. Mehmood, S. Huang, Y. W. Chen, C. Y. Ko, and S. Su, “Phylogenetic analysis and survey of Apis cerana strain of Sacbrood virus (AcSBV) in Taiwan suggests a recent introduction,” J. Invertebr. Pathol., vol. 146, pp. 36–40, 2017, doi: 10.1016/j.jip.2017.04.001.
  • [60] R. C. Ghosh, B. V. Ball, M. M. Willcocks, and M. J. Carter, “The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus,” J. Gen. Virol., vol. 80, no. 6, pp. 1541–1549, 1999, doi: 10.1099/0022-1317-80-6-1541.
  • [61] L. Bailey, A. J. Gibbs, and R. D. Woods, “Sacbrood virus of the larval honey bee (Apis mellifera linnaeus),” Virology, vol. 23, no. 3, pp. 425–429, 1964, doi: 10.1016/0042-6822(64)90266-1.
  • [62] B. Arıcı, “Tokat ve Ordu İllerindeki Bal Arılarında (Apis mellifera L.) Deforme Kanat Virüsü (DWV) ve Tulumsu Yavru Çürüklüğü Virüsü (SBV) Varlığının Araştırılması,” vol. 2, no. 1, pp. 1–8, 2009.
  • [63] J. R. de Miranda, G. Cordoni, and G. Budge, “The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S30–S47, 2010, doi: 10.1016/j.jip.2009.06.014.
  • [64] J. R. de Miranda et al., “Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus,” J. Gen. Virol., vol. 85, no. 8, pp. 2263–2270, 2004, doi: 10.1099/vir.0.79990-0.
  • [65] M. F. Allen and B. V. Ball, “Characterisation and serological relationships of strains of Kashmir bee virus,” Ann. Appl. Biol., vol. 126, no. 3, pp. 471–484, 1995, doi: 10.1111/j.1744-7348.1995.tb05382.x.
  • [66] G. E. Budge et al., “Chronic bee paralysis as a serious emerging threat to honey bees,” Nat. Commun., vol. 11, no. 1, pp. 1–7, 2020, doi: 10.1038/s41467-020-15919-0.
  • [67] A. Güller, M. Usta, G. Çakar, and Z. Kurt, “Molecular characterization of Deformed wing viruses identified in honeybee (Apis mellifera L.) colonies in Erzincan province of Turkey,” Eur. J. Sci. Technol., vol. 2021, no. 27, pp. 186–192, 2021, doi: 10.31590/ejosat.951040.
  • [68] Ş. Kızıltepe, R. Akpınar, A. Akman, S. Kaya, and S. N. Çelik, “Iğdır İlinde Görülen Arı Kolonisi Kayıplarında Viral ve Paraziter Etkenlerin Rolü,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 13, no. 2, pp. 858–871, 2023, doi: 10.21597/jist.1184308.
  • [69] Y. Yıldırım, “Bal Arılarının Viral Hastalıkları,” Cukurova Univ. Agric. Fac., vol. 1, no. 35, pp. 57–66, 2020, doi: 10.36846/cjafs.2020.18.
  • [70] A. Balkaya, A. Güller, M. Usta, and Z. Kurt, “Prevalence of Deformed wing virus and Chronic bee paralysis virus in Honey Bee Colonies of Bingöl province, Turkey,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 13, no. 1, pp. 44–53, 2023, doi: 10.21597/jist.1059418.
  • [71] S. Gisder and E. Genersch, “ Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B, but Not Variant A, via Fluorescence In Situ Hybridization Analysis ,” J. Virol., vol. 95, no. 5, 2021, doi: 10.1128/jvi.01786-20.
  • [72] F. S. de Souza, M. H. Allsopp, and S. J. Martin, “Deformed wing virus prevalence and load in honeybees in South Africa,” Arch. Virol., vol. 166, no. 1, pp. 237–241, 2021, doi: 10.1007/s00705-020-04863-5.
  • [73] J. L. Kevill, K. C. Stainton, D. C. Schroeder, and S. J. Martin, “Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies,” Arch. Virol., vol. 166, no. 10, pp. 2693–2702, 2021, doi: 10.1007/s00705-021-05162-3.
  • [74] M. Gürçay and M. A. Kutlu, “Important Viruses of Honey Bees,” Int. J. Food, Agric. Anim. Sci., vol. 2, no. 2, pp. 29–41, 2022.
  • [75] S. Bhatia, S. S. Baral, C. Vega Melendez, E. Amiri, and O. Rueppell, “Comparing survival of israeli acute paralysis virus infection among stocks of U.S. honey bees,” Insects, vol. 12, no. 1, pp. 1–13, 2021, doi: 10.3390/insects12010060.
  • [76] L. Baıley, “The Epidemiology and Control of Nosema Disease of the Honey‐Bee,” Ann. Appl. Biol., vol. 43, no. 3, pp. 379–389, 1955, doi: 10.1111/j.1744-7348.1955.tb02488.x.
  • [77] Y. Chen et al., “Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees,” J. Invertebr. Pathol., vol. 101, no. 3, pp. 204–209, 2009, doi: 10.1016/j.jip.2009.05.012.
  • [78] R. Galajda, A. Valenčáková, M. Sučik, and P. Kandráčová, “Nosema disease of european honey bees,” J. Fungi, vol. 7, no. 9, 2021, doi: 10.3390/jof7090714.
  • [79] D. L. Miller, E. A. Smith, and I. L. G. Newton, “A bacterial symbiont protects honey bees from fungal disease,” MBio, vol. 12, no. 3, pp. 2–7, 2021, doi: 10.1128/mBio.00503-21.
  • [80] I. Fries, “Nosema Apis- A Parasite in the Honey Bee Colony,” Bee World, vol. 74, no. 1, pp. 5–19, 1993, doi: 10.1080/0005772X.1993.11099149.
  • [81] H. S. Abdulhay and M. I. Yonius, “Effects of diseases and pests on honey bee (Apis mellifera) in different parts in Baghdad city, Iraq,” Plant Arch., vol. 20, pp. 220–223, 2020.
  • [82] I. Fries et al., “Standard methods for Nosema research,” J. Apic. Res., vol. 52, no. 1, pp. 1–28, 2013, doi: 10.3896/IBRA.1.52.1.14.
  • [83] D. Y. Kim et al., “The Ascosphaera Apis Infection (Chalkbrood Disease) Alters the Gut Bacteriome Composition of the Honeybee,” Pathogens, vol. 12, no. 5, p. 734, May 2023, doi: 10.3390/pathogens12050734.
  • [84] İ. Seven and P. Tatlı Seven, “Teknik Arıcılıkta Kritik Bakım ve Besleme Uygulamaları,” Fırat Üniversitesi Sağlık Bilim. Vet. Derg., vol. 32, no. 2, pp. 147–154, 2018.
  • [85] A. Zerek, “Hatay İli Arıcılık İşletmelerinde Nosema ve Amoeba Enfeksiyonlarının Yaygınlığı,” Turkısh J. Agrıcultural Nat. Scıences, vol. 9, no. 4, pp. 976–981, 2022.
  • [86] D. R. Kugonza, “Africa under attack: a continent-wide mapping of pathogens, parasites and predators afflicting the hived honey bee Apis mellifera L.(Hymenoptera: Apidae),” African J. Rural Dev., vol. 5, no. 2, pp. 1–27, 2021.
  • [87] M. Rossi, S. R. Ott, and J. E. Niven, “Malpighamoeba infection compromises fluid secretion and P-glycoprotein detoxification in Malpighian tubules,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-72598-z.
  • [88] N. Şahinler and A. Gül, “Investigation of Bee Diseases in Beekeeping Enterpricese in Hatay Province,” Uludağ Bee J., vol. 1, no. 5, pp. 27–31, 2005.
  • [89] H. Şimşek, “Elazığ Yöresi Bal Arularında Bazı Parazit ve Mantar Hastalıklarının Araştırılması,” pp. 123–126, 2005.
  • [90] A. E. Borum and M. Ülgen, “Güney Marmara Bölgesinde Bal Arılarının Chalkbrood (Ascosphaera Apis) İnfeksiyonunda Predispozisyon Faktörleri Predisposing Factors for Chalkbrood (Ascosphaera apis) Infection in Honey Bees in Northwest Turkey,” Arı Bı̇lı̇mı̇ / Bee Sci., vol. 10, no. May, pp. 56–69, 2010.
  • [91] K. A. Aronstein and K. D. Murray, “Chalkbrood disease in honey bees,” J. Invertebr. Pathol., vol. 103, no. SUPPL. 1, pp. S20–S29, 2010, doi: 10.1016/j.jip.2009.06.018.
  • [92] U. Lermi, “Bartın Yöresi Bal Arısı (Apis Mellifera L.) Zararlıları ve Hastalıkları,” vol. 2, no. 5, pp. 1–179, 2010.
  • [93] A. B. Jensen, K. Aronstein, J. M. Flores, S. Vojvodic, M. A. Palacio, and M. Spivak, “Standard methods for fungal brood disease research,” J. Apic. Res., vol. 52, no. 1, 2013, doi: 10.3896/IBRA.1.52.1.13.
  • [94] J. B. Benoit, J. A. Yoder, D. Sammataro, and L. W. Zettler, “Mycoflora and fungal vector capacity of the parasitic mite varroa destructor (mesostigmata: Varroidae) in honey bee (hymenoptera: Apidae) colonies,” Int. J. Acarol., vol. 30, no. 2, pp. 103–106, 2004, doi:10.1080/01647950408684376.
  • [95] A. M. Shehabeldine, A. H. Hashem, and A. I. Hasaballah, “Antagonistic effect of gut microbiota of the Egyptian honeybees, Apis mellifera L. against the etiological agent of Stonebrood disease,” Int. J. Trop. Insect Sci., vol. 42, no. 2, pp. 1357–1366, 2022, doi: 10.1007/s42690-021-00654-w.
  • [96] K. Foley, G. Fazio, A. B. Jensen, and W. O. H. Hughes, “The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees,” Vet. Microbiol., vol. 169, no. 3–4, pp. 203–210, 2014, doi: 10.1016/j.vetmic.2013.11.029.
  • [97] M. N. Shoreit and M. M. K. Bagy, “Mycoflora associated with stonebrood disease in honeybee colonies in Egypt,” Microbiol. Res., vol. 150, no. 2, pp. 207–211, 1995, doi: 10.1016/S0944-5013(11)80058-3.
  • [98] A. Alizadeh and M. S. Mossadegh, “Stonebrood and some other fungi associated with Apis florea in iran,” J. Apic. Res., vol. 33, no. 4, pp. 213–218, 1994, doi: 10.1080/00218839.1994.11100874.
  • [99] S. Vojvodic, A. B. Jensen, R. R. James, J. J. Boomsma, and J. Eilenberg, “Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood,” Vet. Microbiol., vol. 149, no. 1–2, pp. 200–205, 2011, doi: 10.1016/j.vetmic.2010.10.001.
  • [100] A. Noël, Y. Le Conte, and F. Mondet, “Varroa destructor: How does it harm Apis mellifera honey bees and what can be done about it?,” Emerg. Top. Life Sci., vol. 4, no. 1, pp. 45–57, 2020, doi: 10.1042/ETLS20190125.
  • [101] J. Dittes, H. Aupperle-Lellbach, M. O. Schäfer, C. K. W. Mülling, and I. U. Emmerich, “Veterinary Diagnostic Approach of Common Virus Diseases in Adult Honeybees,” Vet. Sci., vol. 7, no. 4, p. 159, Oct. 2020, doi: 10.3390/vetsci7040159.
  • [102] A. J. Mohammed, K. Abdul, and R. Fhad, “Evaluation Of Oils And Extracts Of Some Natural Materials In The Management Of Varroa Jacobsoni Oudemans Mites On Apis Mellifera Honey Bees In Basrah Province,” Volatiles Essent. Oils, vol. 9, no. 1, pp. 561–574, 2022.
  • [103] L. Aydin, “Aethina tumida (Small Hive Beetle; SHB) and Tropilaelaps spp. Mite; an emerging threat to Turkey Honey Bees,” Ankara Univ. Vet. Fak. Derg., vol. 69, no. 3, pp. 347–354, 2022, doi: 10.33988/auvfd.1019154.
  • [104] A. O. Girişgin, L. Aydin, and Y. E. Yörük, “Hypothetical study of Small Hive Beetle Aethina tumida Infestation in Honeybees, Risk Commodities and Probabilities for Its Introduction in Türkiye,” Kafkas Univ. Vet. Fak. Derg., vol. 28, no. 6, pp. 733–737, 2022, doi: 10.9775/kvfd.2022.28027.
  • [105] A. Nanetti, J. D. Ellis, I. Cardaio, and G. Cilia, “Detection of lotmaria passim, crithidia mellificae and replicative forms of deformed wing virus and kashmir bee virus in the small hive beetle (Aethina tumida),” Pathogens, vol. 10, no. 3, 2021, doi: 10.3390/pathogens10030372.
  • [106] Z. A. Jamal et al., “Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm,” J. King Saud Univ. - Sci., vol. 33, no. 1, p. 101242, 2021, doi: 10.1016/j.jksus.2020.101242.
  • [107] P. Neumann, J. S. Pettis, and M. O. Schäfer, “Quo vadis Aethina tumida? Biology and control of small hive beetles,” Apidologie, vol. 47, no. 3, pp. 427–466, 2016, doi: 10.1007/s13592-016-0426-x.
  • [108] H. Hernández Torres, A. Georgievich Kirejtshuk, C. Núñez Vázquez, and O. García Martínez, “On Aethina tumida Murray (Coleoptera: Nitidulidae: Nitidulinae) in hives of Apis mellifera Linnaeus (Hymenoptera: Apidae) in Campeche, México,” J. Apic. Res., vol. 62, no. 2, pp. 326–329, 2023, doi: 10.1080/00218839.2021.1889223.
  • [109] A. Karahan, M. A. Kutlu, E. Zengin, and İ. Karaca, “Awareness of Beekeepers About the Small Hive Beetle [ Aethina tumida ( Murray , 1867 ) ( Coleoptera : Nitidulidae )], Which is A Threat to Beekeeping in Turkey,” BinBee Arı ve Doğal Ürünler Derg., vol. 1, no. January, pp. 19–28, 2022.
  • [110] L. Wu, L. Li, Y. Xu, Q. Li, F. Liu, and H. Zhao, “Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida,” Pest Manag. Sci., vol. 79, no. 1, pp. 37–44, 2023, doi: 10.1002/ps.7146.
  • [111] G. F. de Landa et al., “Pathogens Detection in the Small Hive Beetle (Aethina tumida (Coleoptera: Nitidulidae)),” Neotrop. Entomol., vol. 50, no. 2, pp. 312–316, 2021, doi: 10.1007/s13744-020-00812-8.
  • [112] A. C. Croce and F. Scolari, “Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior,” Molecules, vol. 27, no. 14, pp. 1–27, 2022, doi: 10.3390/molecules27144458.
  • [113] M. M. Keshlaf, H. B. Mirwan, S. Ghana, S. Mubrok, and T. Shaibi, “Prevalence of Varroa mites (Varroa destructor Anderson & Trueman) and bee lice (Bruala coeca Nitzsch) in honey bee (Apis mellifera L.) colonies in Libya,” Open Vet. J., vol. 13, no. 7, pp. 834–838, 2023, doi: 10.5455/OVJ.2023.v13.i7.4.
  • [114] K. Gratzer, K. Wakjira, S. Fiedler, and R. Brodschneider, “Challenges and perspectives for beekeeping in Ethiopia,” Agron. Sustain. Dev., vol. 41, no. 4, pp. 2–10, 2021, doi: 10.1007/s13593-021-00702-2.
  • [115] T. H. Büscher et al., “The exceptional attachment ability of the ectoparasitic bee louse Braula coeca (Diptera, Braulidae) on the honeybee,” Physiol. Entomol., vol. 47, no. 2, pp. 83–95, 2022, doi: 10.1111/phen.12378.
  • [116] M. Z. Sharif, X. Jiang, and S. M. Puswal, “Pests, parasitoids, and predators: Can they degrade the sociality of a honeybee colony, and be assessed via acoustically monitored systems,” J. Entomol. …, vol. 8, no. 3, pp. 1248–1260, 2020.
  • [117] M. Pietropaoli et al., “Molecular Detection of Acarapis woodi Using Hive Debris as Innovative and Non-Invasive Matrix,” Appl. Sci., vol. 12, no. 6, pp. 10–14, 2022, doi: 10.3390/app12062837.
  • [118] Y. Sakamoto, T. Maeda, M. Yoshiyama, F. Konno, and J. S. Pettis, “Differential autogrooming response to the tracheal mite Acarapis woodi by the honey bees Apis cerana and Apis mellifera,” Insectes Soc., vol. 67, no. 1, pp. 95–102, 2020, doi: 10.1007/s00040-019-00732-w.
  • [119] C. M. Peixoto, M. E. Correia-Oliveira, and C. A. L. De Carvalho, “Current Status of Acarapis woodi Mite Infestation in Africanized Honey Bee Apis mellifera in Brazil,” Florida Entomol., vol. 102, no. 4, pp. 775–777, 2019, doi: 10.1653/024.102.0416.
  • [120] V. V Stolbova, “Current state of Acarapis Hirst mites (Acariformes, Tarsonemidae) distribution and honeybees infestation in Russia,” Ukr. J. Ecol., vol. 11, no. 1, pp. 291–298, 2021, doi: 10.15421/2021.
  • [121] S. Takashima, Y. Ohari, and T. Itagaki, “The prevalence and molecular characterization of Acarapis woodi and Varroa destructor mites in honeybees in the Tohoku region of Japan,” Parasitol. Int., vol. 75, no. December 2019, p. 102052, 2020, doi: 10.1016/j.parint.2020.102052.
  • [122] I. Serrano, C. Verdial, L. Tavares, and M. Oliveira, “The Virtuous Galleria mellonella Model for Scientific Experimentation,” Antibiotics, vol. 12, no. 3, pp. 1–25, 2023, doi: 10.3390/antibiotics12030505.
  • [123] S. S. Saikia, B. K. Borah, G. Baruah, Rokozeno, and M. K. Deka, “Characterization of the gut microbes of greater wax moth (Galleria mellonella Linnaeus) shows presence of potential polymer degraders,” Folia Microbiol. (Praha)., vol. 67, no. 1, pp. 133–141, 2022, doi: 10.1007/s12223-021-00925-6.
  • [124] E. Özgör, “The effects of nosema apis and nosema ceranae infection on survival and phenoloxidase gene expression in galleria mellonella (Lepidoptera: Galleriidae) compared to apis mellifera,” Insects, vol. 12, no. 10, 2021, doi: 10.3390/insects12100953.
  • [125] E. M. Hosni, A. A. Al-Khalaf, M. G. Nasser, H. F. Abou-Shaara, and M. H. Radwan, “Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate,” Insects, vol. 13, no. 5, 2022, doi: 10.3390/insects13050484.
  • [126] A. A. Egelie, A. N. Mortensen, L. Barber, J. Sullivan, and J. D. Ellis, “Lesser Wax Moth Achroia grisella Fabricius (Insecta: Lepidoptera: Pyralidae),” Entomol. Nematol. Univ. Florida, pp. 1–4, 2015.
  • [127] Y. Liu, G. Li, and J. Long, “The complete mitochondrial genome of small wax moth, Achroia grisella (Pyralidae: Galleriinae),” Mitochondrial DNA Part B Resour., vol. 7, no. 5, pp. 738–740, 2022, doi: 10.1080/23802359.2022.2068984.
  • [128] L. Díaz-García, A. Reid, J. Jackson-Camargo, and J. Windmill, “Directional passive acoustic structures inspired by the ear of Achroia grisella,” Proc. Meet. Acoust., vol. 50, no. 1, pp. 1–3, 2022, doi: 10.1121/2.0001715.
  • [129] Chandresh B. Solanki, Birari Vaishali V., Manishkumar J. Joshi, and Prithiv Raj V., “Enemies of Honey bees and their Management,” Agric. FOOD e-Newsletter , vol. 2, no. 4, pp. 56–58, 2020.
  • [130] P. Sabatina, G. Umapathy, and P. A. Saravanan, “Parasıtısatıon Potentıal Of Egg And Larval Parasıtoıds Agaınst Lesser Wax Moth Achroia grisella F. (Lepıdoptera: Pyralıdae) Under Stored Condıtıon,” Uludag Aricilik Derg., vol. 23, no. 2, pp. 215–223, 2023, doi: 10.31467/uluaricilik.1353063.
  • [131] E. A. Wallin, B. Kalinová, J. Kindl, E. Hedenström, and I. Valterová, “Stereochemistry of two pheromonal components of the bumblebee wax moth, Aphomia sociella,” Sci. Rep., vol. 10, no. 1, pp. 1–7, 2020, doi: 10.1038/s41598-020-59069-1.
  • [132] H. K. Sharma et al., “Seasonal incidence, epidemiology and establishment of different pests and disease in laboratory reared Bombus haemorrhoidalis Smith,” Int. J. Trop. Insect Sci., vol. 41, no. 4, pp. 2555–2564, 2021, doi: 10.1007/s42690-021-00435-5.
  • [133] S. E. Schweiger, N. Beyer, A. L. Hass, and C. Westphal, “Pollen and landscape diversity as well as wax moth depredation determine reproductive success of bumblebees in agricultural landscapes,” Agric. Ecosyst. Environ., vol. 326, no. April 2021, p. 107788, 2022, doi: 10.1016/j.agee.2021.107788.
  • [134] L. Aydın and S. Özgür, “Bal Arılarında Bulunan Az Önemli Zararlı Artropodlar (Eklembacaklılar),” Uludağ Arıcılık Derg., vol. 12, no. May, pp. 40–54, 2012.
  • [135] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [136] F. Karimi et al., “Efficient green photocatalyst of silver-based palladium nanoparticles for methyle orange photodegradation, investigation of lipid peroxidation inhibition, antimicrobial, and antioxidant activity,” Food Chem. Toxicol., vol. 169, p. 113406, Nov. 2022, doi: 10.1016/j.fct.2022.113406.
  • [137] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [138] R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors Int., vol. 2, p. 100089, 2021, doi: 10.1016/j.sintl.2021.100089.
  • [139] Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [140] K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, p. 132720, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132720.
  • [141] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater. Chem. Phys., vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • [142] E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures & Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.018.
  • [143] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric sensor based on biogenic nanomaterials for high sensitive detection of hydrogen peroxide and multi-metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [144] B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, and F. Sen, “Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23299–23306, Sep. 2017, doi: 10.1016/j.ijhydene.2017.04.213.
  • [145] “Front Matter,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. i–ii. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [146] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, 2016, doi: 10.1039/C5CY01462J.
  • [147] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [148] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [149] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [150] F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/nn303716n.
  • [151] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [152] B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [153] B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, p. 12258, Aug. 2019, doi: 10.1038/s41598-019-48802-0.
  • [154] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [155] B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Corrigendum to ‘Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction’ [Int J Hydrogen Energy 43 (2018) 20183–20191],” Int. J. Hydrogen Energy, vol. 46, no. 39, p. 20792, Jun. 2021, doi: 10.1016/j.ijhydene.2021.04.166.
  • [156] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [157] F. Şen and G. Gökağaç, “Pt Nanoparticles Synthesized With New Surfactants: Improvement in C1–C3 Alcohol Oxidation Catalytic Activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • [158] F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • [159] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A Superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [160] R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
  • [161] M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced Electrochemical Performance of MnNi 2 O 4 /rGO Nanocomposite as Pseudocapacitor Electrode Material and Methanol Electro Oxidation Catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • [162] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/slct.201601632.
  • [163] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-Nanotube-Based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [164] P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • [165] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [166] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • [167] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [168] B. Şahin et al., “Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line,” Colloids Surfaces B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [169] N. Korkmaz et al., “Biogenic Silver Nanoparticles Synthesized Via Mimusops Elengi Fruit Extract, a Study on Antibiofilm, Antibacterial, and Anticancer Activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [170] F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green Synthesis of Palladium Nanoparticles: Preparation, Characterization, and Investigation of Antioxidant, Antimicrobial, Anticancer, and DNA Cleavage Activities,” Appl. Organomet. Chem., vol. 35, no. 8, Aug. 2021, doi: 10.1002/aoc.6272.
  • [171] R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi:10.1016/J.ENVRES.2021.112622.
  • [172] W. J. M. Steyn, “Potential applications of nanotechnology in pavement engineering,” J. Transp. Eng., vol. 135, no. 10, pp. 764–772, 2009, doi: 10.1061/(ASCE)0733-947X(2009)135:10(764).
  • [173] R. Hussain et al., “Nano-managing silver and zinc as bio-conservational approach against pathogens of the honey bee,” J. Biotechnol., vol. 365, pp. 1–10, Mar. 2023, doi: 10.1016/j.jbiotec.2023.01.009.
  • [174] S. El-Sayied Ali et al., “Exploring bee venom and silver nanoparticles for controlling foulbrood pathogen and enhancing lifespan of honeybees,” Sci. Rep., vol. 14, no. 1, p. 19013, Aug. 2024, doi: 10.1038/s41598-024-67515-7.
There are 174 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology
Journal Section Reviews
Authors

Mert Gül 0009-0005-7215-541X

Ebru Halvacı 0009-0003-2343-0046

Hatice Kars 0009-0002-1107-0605

Teslime Kozak 0009-0006-9446-8449

Damla İkballı 0009-0005-5206-8810

Alper Özengül 0009-0008-4261-2263

Fatih Şen 0000-0001-6843-9026

Publication Date April 30, 2025
Submission Date December 3, 2024
Acceptance Date January 3, 2025
Published in Issue Year 2025 Issue: 009

Cite

APA Gül, M., Halvacı, E., Kars, H., Kozak, T., et al. (2025). Bee diseases and treatment methods. Journal of Scientific Reports-C(009), 28-54.
AMA Gül M, Halvacı E, Kars H, Kozak T, İkballı D, Özengül A, Şen F. Bee diseases and treatment methods. JSR-C. April 2025;(009):28-54.
Chicago Gül, Mert, Ebru Halvacı, Hatice Kars, Teslime Kozak, Damla İkballı, Alper Özengül, and Fatih Şen. “Bee Diseases and Treatment Methods”. Journal of Scientific Reports-C, no. 009 (April 2025): 28-54.
EndNote Gül M, Halvacı E, Kars H, Kozak T, İkballı D, Özengül A, Şen F (April 1, 2025) Bee diseases and treatment methods. Journal of Scientific Reports-C 009 28–54.
IEEE M. Gül, E. Halvacı, H. Kars, T. Kozak, D. İkballı, A. Özengül, and F. Şen, “Bee diseases and treatment methods”, JSR-C, no. 009, pp. 28–54, April 2025.
ISNAD Gül, Mert et al. “Bee Diseases and Treatment Methods”. Journal of Scientific Reports-C 009 (April 2025), 28-54.
JAMA Gül M, Halvacı E, Kars H, Kozak T, İkballı D, Özengül A, Şen F. Bee diseases and treatment methods. JSR-C. 2025;:28–54.
MLA Gül, Mert et al. “Bee Diseases and Treatment Methods”. Journal of Scientific Reports-C, no. 009, 2025, pp. 28-54.
Vancouver Gül M, Halvacı E, Kars H, Kozak T, İkballı D, Özengül A, Şen F. Bee diseases and treatment methods. JSR-C. 2025(009):28-54.