Research Article
BibTex RIS Cite

Rational Economic Decision Making: The Relevance Among The Axioms of The Theory of Expected Utility

Year 2019, , 535 - 548, 22.01.2019
https://doi.org/10.21547/jss.433199

Abstract









Abstract



The theory of expected utility which is suggested by
John Von Neumann and Oscar Morgenstern in 1944 has had great currency since it
was first suggested in 1944 because of its solid and consistent axiomatic
structure.  The theory explains economic
behavior, decision making process, economic preference and choice using axioms.
Although it still prevents its popularity; it has been seriously questioned by
several behavioral and experimental research from 1950 because of  the apparent difference between reality and
the theory. The huge gap between economic behavior in real life situations and
the way that the theory suggests it have been revealed and economists’ view has
been often citicisized for falling short of reality.



This paper provides a detailed
description of all of the axioms of the theory of expected utility, reveals the
relevance among them  and presents a
guidance for economic and interdisciplinary research. 




References

  • Abdellaoui, M. (2002). Economic rationality under uncertainty. GRID-CNRS, ENS de Cachan.
  • Alchian, A. A. (1953). The meaning of utility measurement. The American Economic Review, 43(1), 26-50.
  • Bassett, G.W. Jr. (1987). The St. Petersburg Paradox and bounded utility. History of Political Economy, 19(4), 517-523.
  • Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1): 23 - 36. (Specimen Theoriae Novae de Mensura Sortis. Commentarii Academiae Sceintiarum Imperialis Petropolitanae, Tomus V, 1738, pp. 175 – 192.)
  • Birnbaum, M. H. , & Schmidt, U. (2008). An experimental ınvestigation of violations of transitivity in choice under uncertainty. Kiel Working Paper No. 1396.
  • Board, S. (2009). Preferences and utility. Resource document. UCLA. http://www.econ.ucla.edu/sboard/teaching/econ11_09/econ11_09_lecture2.pdf. Accessed 28 June 2017.
  • Britannica. https://www.britannica.com/topic/The-Book-on-Games-of-Chance. Accessed 28 June 2017.
  • Buffon, G. L. L. Comte de. ( 1777)ESSAIS d’Arithm´etique morale. In: Histoire Naturelle. Suppl´ement Tome Quatri´eme. Paris: De l’Imprimerie Royale, 46 - 124.
  • Carlin, P. S. (1992). Violations of the reduction and independence axioms in Allais-Type and common-ratio effect experiments. Journal of Economic Behavior & Organization, 19(2), 213-235.Carnegie Mellon University. http://www.link.cs.cmu.edu/15859-s11/notes/Mcfadyen_review.pdf. Accessed 28 June 2017.
  • Chakravarty S. R. (2002). Microeconomics. New Delhi: Allied Publishers.Day, B. , & Loomes, G. (2010). Conflicting violations of transitivity and where they may lead us. Theory and Decision, 68, 233–242.
  • Dean, M. (2009). Consumer theory. Resource document. Columbia University. http://www.columbia.edu/~md3405/IM_CT.pdf. Accessed 28 June 2017.
  • Dehling, H. G. (1997). Daniel Bernoulli and the St. Petersburg Paradox. Vierde Serie Deel, 15(3), 223-227.
  • de Montmort, P. R. (1713). Essay d’Analyse sur les Jeux de Hazard. Paris:Jacque Quillau.
  • Dierks, L. H. (2005). Trust as a determinant of consumer behaviour under uncertainty: an empirical analysis of consumers' reactions to a random external shock in Europe. Kiel:Cuvillier Verlag.
  • Dubra, J. (2011). Continuity and completeness under risk. Mathematical Social Sciences, 61, 80-81.
  • Fishburn, P. C. (1986). The axioms of subjective probability. Statitstical Science, 1(3), 335-345.
  • Föllmer, H. , & Schied, A. (2011). Stochastic finance: an introduction in discrete time. Berlin: de Gruyter.
  • Friedman, M. ,& Savage, L. J. (1948). The utility analysis of choices involving risk. The Journal of Political Economy, 56 (4), 279-304.
  • Galaabataar, T. , & Karni, E. (2010). Objective and subjective expected utility with incomplete preferences. Economics Working Paper from the archive of The Johns Hopkins University.
  • Garcia, J. A. (2013). A bit about the St. Petersburg Paradox. http://www.math.tamu.edu/~david.larson/garcia13.pdf. Accessed 28 June 2017.
  • Grüne-Yanoff, T. (2012). Paradoxes of rational choice theory. In S. Roeser, R. Hillerbrand, P. Sandin, M. Peterson (Eds.), Handbook of risk theory: epistemology, decision theory, ethics, and social implications of risk(pp. 499-516). London:Springer.
  • Henderson, J.M. , & Quandt, R.E. (1980). Microeconomic theory: a mathematical approach. Singapore:McGraw –Hill.
  • Herfert, M. (2006).Nonparametric inference of utilites: entropy analysis with applications to consumer theory. Hamburg :diplom.de.
  • Holt, C. A. (1986). Preference reversal and the independence axiom. The American Economic Review, 76(3), 508-515.
  • Huygens, C. (1657). De ratiociniis in ludo aleae. (On reckoning at Games of Chance). London: T. Woodward.
  • Kahneman, D. , & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47(2), 263-292.
  • Kahneman, D. , & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341-350.
  • Kahneman, D. (2003). Maps of bounded rationality: psychology for behavioral economics. The American Economic Review, 93(5), 1449-1475.
  • Karni, E. (2011). Continuity, completeness and the definition of weak preferences. Mathematical Social Sciences, 62(2), 123-125.
  • Karni, E. (2007). Archimedean and continuity. Mathematical Social Sciences, 53(3), 332-334.
  • Keynes, J. M. (1921). A treatise on probability. London:Macmillan And Co.
  • Kreps, D. M. (1990). A course in microeconomic theory. USA:Harvester Wheatsheaf.
  • Levin, J. (2006). Choice under uncertainty. Resource document. Stanford University. https://web.stanford.edu/~jdlevin/Econ%20202/Uncertainty.pdf. Accessed 28 June 2017.
  • Loomes, G. (1991). Evidence of a new violation of the independence axiom. Journal of Risk and Uncertainty, 4(1), 91–108 .
  • Loomes, G. , Starmer, C. , Sugden, R. (1991). Observing violations of transitivity by experimental methods. Econometrica , 59(2), 425-439 .
  • Machina, M. J. (1987). Choice under uncertainty: problems solved and unsolved. The Journal of Economic Perspectives, 1(1), 121-154.
  • Mas-Colell, A. , Whinston, M. D. , Green, J. R. (1995). Microeconomic Theory. New York:Oxford University Press.
  • Menger, K. (1934). Das Unsicherheitsmoment in der Wertlehre. Nationaloeken, Journal of Economics, 5( 4), 459 - 485.
  • Mobius, M. M. (2008). Motivation and decision theory. Resource document. Tsinghua University. http://iiis.tsinghua.edu.cn/~kenshin/gt/mlecture1.pdf. Accessed 28 June 2017.
  • Mongin, P. (1998). Expected utility theory. In J. B. Davis, D. W. Hands, Uskali Mäki (Eds.), The Handbook Of Economic Methodology (pp.171-178). UK:Edward Elgar Publishing.
  • Moschandreas, M. (2000). Business Economics. London:Thomson.
  • Mukhopadhyay, P. (2012). An introduction to the theory of probability. India:World Scientific.
  • Muñoz-Garcia, F. (2017). Advanced microeconomic theory: an intuitive approach with examples. Cambridge:MIT Press.
  • Ordoñez, G. (2007). Notes on decision theory. Resource document. University of Pennsylvania. https://www.sas.upenn.edu/~ordonez/pdfs/ECON%20201%202007/EU.pdf. Accessed 28 June 2017.
  • Ore, O. ( 1953). Cardano the gambling scholar. New Jersey:Princeton University Press.
  • Pacioli, F. L. B. (1494). Summa de arithmetica, geometrica, proportioni et proportionalita. Venice.
  • Peters, O. (2011). The time resolution of the St. Petersburg Paradox. Philosophical Transactions of the Royal Society A. Theme Issue ‘Handling Uncertainty in Science, 1-20.
  • Pickover, C. A. (2009).The math book: from Pythagoras to the 57th dimension, 250 milestones in the history of mathematics. London: Sterling.
  • Salov, V. (2014). "The gibbon of math history". Who invented the St. Petersburg Paradox? Khinchin’s resolution. arXiv:1403.3001v1 [math.HO], 1-17.
  • Schmeidler, D. (1971). A condition for the completeness of partial preference relations. Econometrica, 39(2), 403-04.
  • Schoemaker, P. J. H. (1982). The expected utility model: its variants, purposes, evidence and limitations. Journal of Economic Literature, 20(2), 529-563.
  • Shlesinger, M. F. (2012). Milestones in the history of probability. In L. Cohen, H. V. Poor, M. O. Scully (Eds.), Classical, semi-classical and quantum noise (pp.225-226). London: Springer.
  • Shon, J. (2008). More is better an investigation of monotonicity assumption in economics. Resource document. The University of Chicago. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Shon.pdf. Accessed 28 June 2017.
  • Slantchev, B. L. (2005). Game theory: preferences and expected utility. Resource document. University of California San Diego. http://slantchev.ucsd.edu/courses/gt/02-preferences-expected-utility.pdf. Accessed 28 June 2017.
  • Stigler, S. M. (1999).Statistics on the table: the history of statistical concepts and methods. London: Harvard University Press.
  • Székely, G. J. , & Richards, D. St. P. (2004). The St. Petersburg Paradox and the crash of high-tech stocks in 2000. The American Statistician, 58(3), 225-231.
  • Todhunter, I. (1865). A history of the mathematical theory of probability:from the time of Pascal to that of Laplace. London:MacMillan.
  • Tversky, A. (2004). Preference, belief, and similarity, selected writings. In E. Shafir (Ed.), A Bradford Book. London: The MIT Press.
  • Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76(1):31-48.
  • Tversky, A. ,& Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453-458.
  • Tversky, A. , & Kahneman, D. (1986). Rational choice and the framing of decisions, The Journal of Business, 59(4), Part 2: The Behavioral Foundations of Economic Theory, 251-278.
  • Von Neumann, J. , & Morgenstern, O. (1944). Theory of games and economic behavior. New Jersey:Princeton University.
  • Whitworth, W. A. (1901). Choice and chance. Cambridge: Deighton, Bell, & Co.

Rasyonel İktisadi Karar Alma:Beklenen Fayda Teorisi Aksiyomları Arasındaki İlişki

Year 2019, , 535 - 548, 22.01.2019
https://doi.org/10.21547/jss.433199

Abstract



John Von Neumann ve Oscar Morgenstern tarafından 1944 yılında önerilen
beklenen fayda teorisi  ilk defa
önerildiği 1944 yılından beri sağlam ve tutarlı aksiyomatik yapısı nedeniyle
büyük rağbet görmüş, geçerlilik kazanmıştır. Bu teori iktisadi davranışı, karar
alma süreçlerini, iktisadi tercih ve seçimi aksiyomları kullanarak
açıklamaktadır. Her ne kadar popülaritesini korusa da; realite ve teori
arasındaki bariz farklılık nedeniyle 1950 yılından sonra çeşitli davranışsal ve
deneysel araştırmalarla ciddi biçimde sorgulanmıştır. Gerçek hayattaki iktisadi
davranış ve teorinin öngörüsü arasındaki büyük boşluk açıklanmış ve
iktisatçıların görüşü sıklıkla gerçeklikten uzak olmakla eleştirilmiştir.



Bu makale beklenen fayda teorisinin aksiyomlarının tamamının detaylı
tanımını sağlamakta, aralarındaki ilişkiyi ortya çıkarmakta ve iktisadi ve
disiplinlerarası araştırmalar için bir kılavuz sunmaktadır.




References

  • Abdellaoui, M. (2002). Economic rationality under uncertainty. GRID-CNRS, ENS de Cachan.
  • Alchian, A. A. (1953). The meaning of utility measurement. The American Economic Review, 43(1), 26-50.
  • Bassett, G.W. Jr. (1987). The St. Petersburg Paradox and bounded utility. History of Political Economy, 19(4), 517-523.
  • Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1): 23 - 36. (Specimen Theoriae Novae de Mensura Sortis. Commentarii Academiae Sceintiarum Imperialis Petropolitanae, Tomus V, 1738, pp. 175 – 192.)
  • Birnbaum, M. H. , & Schmidt, U. (2008). An experimental ınvestigation of violations of transitivity in choice under uncertainty. Kiel Working Paper No. 1396.
  • Board, S. (2009). Preferences and utility. Resource document. UCLA. http://www.econ.ucla.edu/sboard/teaching/econ11_09/econ11_09_lecture2.pdf. Accessed 28 June 2017.
  • Britannica. https://www.britannica.com/topic/The-Book-on-Games-of-Chance. Accessed 28 June 2017.
  • Buffon, G. L. L. Comte de. ( 1777)ESSAIS d’Arithm´etique morale. In: Histoire Naturelle. Suppl´ement Tome Quatri´eme. Paris: De l’Imprimerie Royale, 46 - 124.
  • Carlin, P. S. (1992). Violations of the reduction and independence axioms in Allais-Type and common-ratio effect experiments. Journal of Economic Behavior & Organization, 19(2), 213-235.Carnegie Mellon University. http://www.link.cs.cmu.edu/15859-s11/notes/Mcfadyen_review.pdf. Accessed 28 June 2017.
  • Chakravarty S. R. (2002). Microeconomics. New Delhi: Allied Publishers.Day, B. , & Loomes, G. (2010). Conflicting violations of transitivity and where they may lead us. Theory and Decision, 68, 233–242.
  • Dean, M. (2009). Consumer theory. Resource document. Columbia University. http://www.columbia.edu/~md3405/IM_CT.pdf. Accessed 28 June 2017.
  • Dehling, H. G. (1997). Daniel Bernoulli and the St. Petersburg Paradox. Vierde Serie Deel, 15(3), 223-227.
  • de Montmort, P. R. (1713). Essay d’Analyse sur les Jeux de Hazard. Paris:Jacque Quillau.
  • Dierks, L. H. (2005). Trust as a determinant of consumer behaviour under uncertainty: an empirical analysis of consumers' reactions to a random external shock in Europe. Kiel:Cuvillier Verlag.
  • Dubra, J. (2011). Continuity and completeness under risk. Mathematical Social Sciences, 61, 80-81.
  • Fishburn, P. C. (1986). The axioms of subjective probability. Statitstical Science, 1(3), 335-345.
  • Föllmer, H. , & Schied, A. (2011). Stochastic finance: an introduction in discrete time. Berlin: de Gruyter.
  • Friedman, M. ,& Savage, L. J. (1948). The utility analysis of choices involving risk. The Journal of Political Economy, 56 (4), 279-304.
  • Galaabataar, T. , & Karni, E. (2010). Objective and subjective expected utility with incomplete preferences. Economics Working Paper from the archive of The Johns Hopkins University.
  • Garcia, J. A. (2013). A bit about the St. Petersburg Paradox. http://www.math.tamu.edu/~david.larson/garcia13.pdf. Accessed 28 June 2017.
  • Grüne-Yanoff, T. (2012). Paradoxes of rational choice theory. In S. Roeser, R. Hillerbrand, P. Sandin, M. Peterson (Eds.), Handbook of risk theory: epistemology, decision theory, ethics, and social implications of risk(pp. 499-516). London:Springer.
  • Henderson, J.M. , & Quandt, R.E. (1980). Microeconomic theory: a mathematical approach. Singapore:McGraw –Hill.
  • Herfert, M. (2006).Nonparametric inference of utilites: entropy analysis with applications to consumer theory. Hamburg :diplom.de.
  • Holt, C. A. (1986). Preference reversal and the independence axiom. The American Economic Review, 76(3), 508-515.
  • Huygens, C. (1657). De ratiociniis in ludo aleae. (On reckoning at Games of Chance). London: T. Woodward.
  • Kahneman, D. , & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47(2), 263-292.
  • Kahneman, D. , & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341-350.
  • Kahneman, D. (2003). Maps of bounded rationality: psychology for behavioral economics. The American Economic Review, 93(5), 1449-1475.
  • Karni, E. (2011). Continuity, completeness and the definition of weak preferences. Mathematical Social Sciences, 62(2), 123-125.
  • Karni, E. (2007). Archimedean and continuity. Mathematical Social Sciences, 53(3), 332-334.
  • Keynes, J. M. (1921). A treatise on probability. London:Macmillan And Co.
  • Kreps, D. M. (1990). A course in microeconomic theory. USA:Harvester Wheatsheaf.
  • Levin, J. (2006). Choice under uncertainty. Resource document. Stanford University. https://web.stanford.edu/~jdlevin/Econ%20202/Uncertainty.pdf. Accessed 28 June 2017.
  • Loomes, G. (1991). Evidence of a new violation of the independence axiom. Journal of Risk and Uncertainty, 4(1), 91–108 .
  • Loomes, G. , Starmer, C. , Sugden, R. (1991). Observing violations of transitivity by experimental methods. Econometrica , 59(2), 425-439 .
  • Machina, M. J. (1987). Choice under uncertainty: problems solved and unsolved. The Journal of Economic Perspectives, 1(1), 121-154.
  • Mas-Colell, A. , Whinston, M. D. , Green, J. R. (1995). Microeconomic Theory. New York:Oxford University Press.
  • Menger, K. (1934). Das Unsicherheitsmoment in der Wertlehre. Nationaloeken, Journal of Economics, 5( 4), 459 - 485.
  • Mobius, M. M. (2008). Motivation and decision theory. Resource document. Tsinghua University. http://iiis.tsinghua.edu.cn/~kenshin/gt/mlecture1.pdf. Accessed 28 June 2017.
  • Mongin, P. (1998). Expected utility theory. In J. B. Davis, D. W. Hands, Uskali Mäki (Eds.), The Handbook Of Economic Methodology (pp.171-178). UK:Edward Elgar Publishing.
  • Moschandreas, M. (2000). Business Economics. London:Thomson.
  • Mukhopadhyay, P. (2012). An introduction to the theory of probability. India:World Scientific.
  • Muñoz-Garcia, F. (2017). Advanced microeconomic theory: an intuitive approach with examples. Cambridge:MIT Press.
  • Ordoñez, G. (2007). Notes on decision theory. Resource document. University of Pennsylvania. https://www.sas.upenn.edu/~ordonez/pdfs/ECON%20201%202007/EU.pdf. Accessed 28 June 2017.
  • Ore, O. ( 1953). Cardano the gambling scholar. New Jersey:Princeton University Press.
  • Pacioli, F. L. B. (1494). Summa de arithmetica, geometrica, proportioni et proportionalita. Venice.
  • Peters, O. (2011). The time resolution of the St. Petersburg Paradox. Philosophical Transactions of the Royal Society A. Theme Issue ‘Handling Uncertainty in Science, 1-20.
  • Pickover, C. A. (2009).The math book: from Pythagoras to the 57th dimension, 250 milestones in the history of mathematics. London: Sterling.
  • Salov, V. (2014). "The gibbon of math history". Who invented the St. Petersburg Paradox? Khinchin’s resolution. arXiv:1403.3001v1 [math.HO], 1-17.
  • Schmeidler, D. (1971). A condition for the completeness of partial preference relations. Econometrica, 39(2), 403-04.
  • Schoemaker, P. J. H. (1982). The expected utility model: its variants, purposes, evidence and limitations. Journal of Economic Literature, 20(2), 529-563.
  • Shlesinger, M. F. (2012). Milestones in the history of probability. In L. Cohen, H. V. Poor, M. O. Scully (Eds.), Classical, semi-classical and quantum noise (pp.225-226). London: Springer.
  • Shon, J. (2008). More is better an investigation of monotonicity assumption in economics. Resource document. The University of Chicago. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Shon.pdf. Accessed 28 June 2017.
  • Slantchev, B. L. (2005). Game theory: preferences and expected utility. Resource document. University of California San Diego. http://slantchev.ucsd.edu/courses/gt/02-preferences-expected-utility.pdf. Accessed 28 June 2017.
  • Stigler, S. M. (1999).Statistics on the table: the history of statistical concepts and methods. London: Harvard University Press.
  • Székely, G. J. , & Richards, D. St. P. (2004). The St. Petersburg Paradox and the crash of high-tech stocks in 2000. The American Statistician, 58(3), 225-231.
  • Todhunter, I. (1865). A history of the mathematical theory of probability:from the time of Pascal to that of Laplace. London:MacMillan.
  • Tversky, A. (2004). Preference, belief, and similarity, selected writings. In E. Shafir (Ed.), A Bradford Book. London: The MIT Press.
  • Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76(1):31-48.
  • Tversky, A. ,& Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453-458.
  • Tversky, A. , & Kahneman, D. (1986). Rational choice and the framing of decisions, The Journal of Business, 59(4), Part 2: The Behavioral Foundations of Economic Theory, 251-278.
  • Von Neumann, J. , & Morgenstern, O. (1944). Theory of games and economic behavior. New Jersey:Princeton University.
  • Whitworth, W. A. (1901). Choice and chance. Cambridge: Deighton, Bell, & Co.
There are 63 citations in total.

Details

Primary Language English
Subjects Business Administration
Journal Section Economics
Authors

Gelengül Koçaslan

Publication Date January 22, 2019
Submission Date June 12, 2018
Acceptance Date January 8, 2019
Published in Issue Year 2019

Cite

APA Koçaslan, G. (2019). Rational Economic Decision Making: The Relevance Among The Axioms of The Theory of Expected Utility. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 18(1), 535-548. https://doi.org/10.21547/jss.433199