Research Article
BibTex RIS Cite

Türkiye’de Gelir Dağılımının Çevre Kirliliği Üzerindeki Etkileri Üzerine Bir İnceleme

Year 2019, Volume: 18 Issue: 4, 1477 - 1488, 18.10.2019
https://doi.org/10.21547/jss.556006

Abstract

Bu çalışmada Türkiye’de
gelir dağılımının çevre kirliliği üzerindeki etkilerinin 1990-2015 gözlem
aralığı için incelenmesi amaçlanmaktadır. Bu amaç doğrultusunda, reel milli
gelir, enerji yoğunluğu, gelir eşitsizliği ve karbondioksit emisyonu arasındaki
ilişki ARDL sınır testi ve bootstrap nedensellik testi aracılığıyla
incelenmiştir. Ayrıca, sırasıyla sanayi sektörü, imalat sektörü ve hizmet
sektörü katma değerlerinin çevre kirliliği üzerindeki etkilerini karşılaştırmak
amacıyla da üç farklı ampirik model oluşturulmuştur. Elde edilen sonuçlara göre
milli gelirdeki ve enerji yoğunluğundaki artışın hem kısa dönemde hem de uzun
dönemde çevre kirliliğini arttırdığı görülmektedir. Gelir eşitsizliğindeki
artışın ise kısa dönemde çevresel kaliteyi bozmasına rağmen uzun dönemde çevre
kirliliğini azalttığı bulgularına ulaşılmıştır. Ayrıca, sanayi sektörü katma
değerindeki artışın çevre kirliliğini arttırdığı buna karşın hizmet sektörü
katma değerindeki artışın çevre kirliliğini azalttığı yönünde bulgulara
ulaşılmıştır. 

References

  • Baek, J., & Gweisah, G. (2013). Does income inequality harm the environment?: Empirical evidence from the United States. Energy Policy, 62, 1434-1437.
  • BP (2018). British Petroleum Statistical Review of World Energy.
  • Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76, 138-154.
  • Clement, M., & Meunie, A. (2010). Is inequality harmful for the environment? An empirical analysis applied to developing and transition countries. Review of social economy, 68(4), 413-445.
  • Grunewald, N., Harteisen, M., Lay, J., Minx, J., & Renner, S. (2012). The carbon footprint of Indian households. In 32nd General Conference of The International Association for Research in Income and Wealth (pp. 5-11).
  • Grunewald, N., Klasen, S., Martínez-Zarzoso, I., & Muris, C. (2017). The trade-off between income inequality and carbon dioxide emissions. Ecological Economics, 142, 249-256.
  • Guo, L. (2014). CO 2 emissions and regional income disparity: Evidence from China. The Singapore Economic Review, 59(01), 1450007.
  • Hacker, S., & Hatemi-J, A. (2012). A bootstrap test for causality with endogenous lag length choice: theory and application in finance. Journal of Economic Studies, 39(2), 144-160.
  • Hailemariam, A., Dzhumashev, R., & Shahbaz, M. (2019). Carbon emissions, income inequality and economic development. Empirical Economics, 1-21.
  • Hao, Y., Chen, H., & Zhang, Q. (2016). Will income inequality affect environmental quality? Analysis based on China's provincial panel data. Ecological indicators, 67, 533-542.
  • Jorgenson, A., Schor, J., & Huang, X. (2017). Income inequality and carbon emissions in the United States: a state-level analysis, 1997–2012. Ecological Economics, 134, 40-48.
  • Kasuga, H., & Takaya, M. (2017). Does inequality affect environmental quality? Evidence from major Japanese cities. Journal of cleaner production, 142, 3689-3701.
  • Liu, C., Jiang, Y., & Xie, R. (2019). Does income inequality facilitate carbon emission reduction in the US?. Journal of Cleaner Production, 217, 380-387.
  • Pesaran, M. H., & Shin, Y. (1997). An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society Monographs, 31, 371-413.
  • Qu, B., & Zhang, Y. (2011). Effect of income distribution on the environmental Kuznets curve. Pacific Economic Review, 16(3), 349-370.
  • Solt, (2019). Measuring Income Inequality Across Countries and Over Time: The Standardized World Income Inequality Database. SWIID Version 8.0, February 2019.
  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1-2), 225-250.
  • WDI (2018). World Development Indicators, World Bank.
  • Wolde-Rufael, Y., & Idowu, S. (2017). Income distribution and CO2 emission: A comparative analysis for China and India. Renewable and Sustainable Energy Reviews, 74, 1336-1345.
  • Zhang, C., & Zhao, W. (2014). Panel estimation for income inequality and CO2 emissions: A regional analysis in China. Applied energy, 136, 382-392.
  • Zivot, E., & Andrews, D. (1992). Further evidence ofthe great crash, the oil-price shock and the unit-root hypothesis. Journal ofBusiness and Economic Statistics 10, 251–270.

An Investigation on the Impact of Income Distribution on Environmental Pollution

Year 2019, Volume: 18 Issue: 4, 1477 - 1488, 18.10.2019
https://doi.org/10.21547/jss.556006

Abstract

This
paper aims to examine the impact of income distribution on environmental
pollution for the period of 1990-2015 in Turkey. For this purpose, the
relationship between real income, energy intensity, income inequality and carbon
dioxide emissions are investigated with ARDL bound test and bootstrap causality
method. In addition, three empirical model are constructed to observe the
relative effects of the value added of industry sector, manufacturing sector
and service sector on environmental pollution. The results reveal that
increasing income level and energy intensity increases environmental pollution
both for the short and the long-run. In addition, it is concluded that
increasing income inequality deteriorates the environmental quality in the
short-run while inequality reduces the environmental pollution in the long-run.
Moreover, increasing industrial value-added increases carbon dioxide emissions
while increasing the value added of service sector reduces the pollution.

References

  • Baek, J., & Gweisah, G. (2013). Does income inequality harm the environment?: Empirical evidence from the United States. Energy Policy, 62, 1434-1437.
  • BP (2018). British Petroleum Statistical Review of World Energy.
  • Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76, 138-154.
  • Clement, M., & Meunie, A. (2010). Is inequality harmful for the environment? An empirical analysis applied to developing and transition countries. Review of social economy, 68(4), 413-445.
  • Grunewald, N., Harteisen, M., Lay, J., Minx, J., & Renner, S. (2012). The carbon footprint of Indian households. In 32nd General Conference of The International Association for Research in Income and Wealth (pp. 5-11).
  • Grunewald, N., Klasen, S., Martínez-Zarzoso, I., & Muris, C. (2017). The trade-off between income inequality and carbon dioxide emissions. Ecological Economics, 142, 249-256.
  • Guo, L. (2014). CO 2 emissions and regional income disparity: Evidence from China. The Singapore Economic Review, 59(01), 1450007.
  • Hacker, S., & Hatemi-J, A. (2012). A bootstrap test for causality with endogenous lag length choice: theory and application in finance. Journal of Economic Studies, 39(2), 144-160.
  • Hailemariam, A., Dzhumashev, R., & Shahbaz, M. (2019). Carbon emissions, income inequality and economic development. Empirical Economics, 1-21.
  • Hao, Y., Chen, H., & Zhang, Q. (2016). Will income inequality affect environmental quality? Analysis based on China's provincial panel data. Ecological indicators, 67, 533-542.
  • Jorgenson, A., Schor, J., & Huang, X. (2017). Income inequality and carbon emissions in the United States: a state-level analysis, 1997–2012. Ecological Economics, 134, 40-48.
  • Kasuga, H., & Takaya, M. (2017). Does inequality affect environmental quality? Evidence from major Japanese cities. Journal of cleaner production, 142, 3689-3701.
  • Liu, C., Jiang, Y., & Xie, R. (2019). Does income inequality facilitate carbon emission reduction in the US?. Journal of Cleaner Production, 217, 380-387.
  • Pesaran, M. H., & Shin, Y. (1997). An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society Monographs, 31, 371-413.
  • Qu, B., & Zhang, Y. (2011). Effect of income distribution on the environmental Kuznets curve. Pacific Economic Review, 16(3), 349-370.
  • Solt, (2019). Measuring Income Inequality Across Countries and Over Time: The Standardized World Income Inequality Database. SWIID Version 8.0, February 2019.
  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1-2), 225-250.
  • WDI (2018). World Development Indicators, World Bank.
  • Wolde-Rufael, Y., & Idowu, S. (2017). Income distribution and CO2 emission: A comparative analysis for China and India. Renewable and Sustainable Energy Reviews, 74, 1336-1345.
  • Zhang, C., & Zhao, W. (2014). Panel estimation for income inequality and CO2 emissions: A regional analysis in China. Applied energy, 136, 382-392.
  • Zivot, E., & Andrews, D. (1992). Further evidence ofthe great crash, the oil-price shock and the unit-root hypothesis. Journal ofBusiness and Economic Statistics 10, 251–270.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Economics
Authors

Mehmet Destek 0000-0002-2514-9405

Publication Date October 18, 2019
Submission Date April 19, 2019
Acceptance Date September 24, 2019
Published in Issue Year 2019 Volume: 18 Issue: 4

Cite

APA Destek, M. (2019). Türkiye’de Gelir Dağılımının Çevre Kirliliği Üzerindeki Etkileri Üzerine Bir İnceleme. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 18(4), 1477-1488. https://doi.org/10.21547/jss.556006