Research Article
BibTex RIS Cite

Application of ROC and CODAS Techniques for Cloud Service Provider Selection

Year 2022, Volume: 21 Issue: 1, 217 - 230, 26.01.2022
https://doi.org/10.21547/jss.933287

Abstract

Due to the widespread use of cloud services, the choice of cloud service providers has become an important problem for companies. It is a strategic decision-making problem for companies to determine the most suitable service provider that can meet their expectations and needs. Choosing the most effective service provider for a firm depends on numerous criteria based on the firm's strategies, needs and resources. Therefore, in the present study, an integrated decision model based on Rank Order Centroid (ROC) and Combinative Distance-Based Assessment (CODAS) techniques has been developed. In the first stage of the application, the criteria were evaluated using the ROC method, and the service providers were listed using the CODAS technique in the second stage. The effectiveness of the proposed model has been tested by a software company that wants to select a cloud service provider. The results of the research are expected to contribute to service providers and firms that want to select cloud service providers that can meet their needs.

References

  • Alam, K. A., Ahmed, R., Butt, F. S., Kim, S. G., & Ko, K. M. (2018). An uncertainty-aware integrated fuzzy AHP-WASPAS model to evaluate public cloud computing services. Procedia Computer Science, 130, 504-509.
  • Ali, O., Soar, J., Yong, J., & Tao, X. (2016). Factors to be considered in cloud computing adoption. In Web Intelligence, 14(4), 309-323.
  • Badi, I., Abdulshahed, A. M., & Shetwan, A. (2018). A case study of supplier selection for a steelmaking company in Libya by using the Combinative Distance-based Assessment (CODAS) model, Decision Making: Applications in Management and Engineering, 1(1), 1-12.
  • Barron, F. H., & Barrett, B. E. (1996). Decision quality using ranked attribute weights, Management Science, 42(11), 1515-1523. Basu, A., & Ghosh, S. (2018). Implementing fuzzy TOPSIS in cloud type and service provider selection. Advances in Fuzzy Systems, 1-12.
  • Burda, D., & Teuteberg, F. (2016). Exploring consumer preferences in cloud archiving–a student's perspective. Behaviour & Information Technology, 35(2), 89-105.
  • Chang, V., Walters, R. J., & Wills, G. B. (2016). Organisational sustainability modelling—An emerging service and analytics model for evaluating Cloud Computing adoption with two case studies, International Journal of Information Management, 36(1), 167-179.
  • Choi, C. R., & Jeong, H. Y. (2014). Quality evaluation and best service choice for cloud computing based on user preference and weights of attributes using the analytic network process. Electronic Commerce Research, 14(3), 245-270.
  • El-Gazzar, R., Hustad, E., & Olsen, D. H. (2016). Understanding cloud computing adoption issues: A Delphi study approach. Journal of Systems and Software, 118, 64-84.
  • Fan, W., Yang, S., & Pei, J. (2014). A novel two‐stage model for cloud service trustworthiness evaluation. Expert Systems, 31(2), 136-153.
  • Ghorabaee, K. M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44.
  • Gireesha, O., Somu, N., Krithivasan, K., & VS, S. S. (2020). IIVIFS-WASPAS: an integrated multi-criteria decision-making perspective for cloud service provider selection. Future Generation Computer Systems, 103, 91-110.
  • Gutierrez, A., Boukrami, E., & Lumsden, R. (2015). Technological, organisational and environmental factors influencing managers’ decision to adopt cloud computing in the UK. Journal of Enterprise Information Management, 28(6), 788-807.
  • Henkoğlu, T., & Külcü, Ö. (2013). Bilgi erişim platformu olarak bulut bilişim: Riskler ve hukuksal koşullar üzerine bir inceleme. Bilgi Dünyası, 14(1), 62-86.
  • Hogan, M., Liu, F., Sokol, A., & Tong, J. (2011). Nist cloud computing standards roadmap. NIST Special Publication, 35, 6-11.
  • Jatoth, C., Gangadharan, G. R., Fiore, U., & Buyya, R. (2019). SELCLOUD: A hybrid multi-criteria decision-making model for selection of cloud services. Soft Computing, 23(13), 4701-4715.
  • Kumar, R. R., Mishra, S., & Kumar, C. (2017). Prioritizing the solution of cloud service selection using integrated MCDM methods under fuzzy environment. The Journal of Supercomputing, 73(11), 4652-4682.
  • Küçüksille, E., Özger, F., & Genç, S. (2013). Mobil bulut bilişim ve geleceği. Akademik Bilişim, 695-199.
  • Mishra, P. S., Maparu, T. S., & Muhuri, S. (2019, Aralık). Evaluation of ‘architectural and aesthetic value’of built heritage: a comparison of weightage methods, The International Conference on Future Cities-2019.
  • Lee, S., & Seo, K. K. (2016). A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications, 86(1), 57-75.
  • Paunović, M., Ralević, N. M., Gajović, V., Mladenović Vojinović, B., & Milutinović, O. (2018). Two-stage fuzzy logic model for cloud service supplier selection and evaluation. Mathematical Problems in Engineering, 1-11.
  • Papathanasiou, J., Kostoglou, V., & Petkos, D. (2015). A comparative analysis of cloud computing services using multicriteria decision analysis methodologies. International Journal of Information and Decision Sciences, 7(1), 51-70.
  • Roszkowska, E. (2013). Rank ordering criteria weighting methods–a comparative overview, Optimum Studia Ekonomiczne Nr 5(65), 14-33.
  • Sun, L., Ma, J., Zhang, Y., Dong, H., & Hussain, F. K. (2016). Cloud-FuSeR: Fuzzy ontology and MCDM based cloud service selection. Future Generation Computer Systems, 57, 42-55.
  • Tanoumand, N., Ozdemir, D. Y., Kilic, K., & Ahmed, F. (2017, Temmuz). Selecting cloud computing service provider with fuzzy AHP. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-5.
  • Turan, M. (2014). Bulut bilişim ve mali etkileri: Bulutta vergi, Bilgi Dünyası, 15(2), 296-326.
  • Vidhyalakshmi, R., & Kumar, V. (2016). Determinants of cloud computing adoption by SMEs. International Journal of Business Information Systems, 22(3), 375-395.

Bulut Hizmet Sağlayıcısı Seçimi için ROC ve CODAS Tekniklerinin Uygulanması

Year 2022, Volume: 21 Issue: 1, 217 - 230, 26.01.2022
https://doi.org/10.21547/jss.933287

Abstract

Bulut hizmetlerinin yaygınlaşması nedeniyle, bulut hizmet sağlayıcılarının seçimi firmalar için önemli bir sorun haline gelmiştir. Firmaların kendi beklenti ve ihtiyaçlarını karşılayabilecek en uygun hizmet sağlayıcısını belirleyebilmeleri stratejik bir karar verme problemidir. Bir firma için en etkili hizmet sağlayıcının seçilmesi, firmanın stratejilerine, ihtiyaçlarına ve kaynaklarına dayanan çok sayıda kritere bağlıdır. Bu yüzden mevcut çalışmada Rank Order Centroid (ROC) ve Combinative Distance-Based Assessment (CODAS) tekniklerine dayalı entegre bir karar modeli geliştirilmiştir. Uygulamanın birinci aşamasında ROC yöntemi aracılığıyla kriterler değerlendirilmiş, ikinci aşamasında CODAS tekniği kullanılarak hizmet sağlayıcıları sıralanmıştır. Önerilen modelin etkinliği bulut hizmet sağlayıcısı seçmek isteyen bir yazılım şirketinde test edilmiştir. Yapılan araştırmada elde edilen sonuçların hizmet sağlayıcılarına ve gereksinimlerini karşılayabilecek bulut hizmet sağlayıcılarını seçmek isteyen kuruluşlara katkı sağlaması beklenmektedir.

References

  • Alam, K. A., Ahmed, R., Butt, F. S., Kim, S. G., & Ko, K. M. (2018). An uncertainty-aware integrated fuzzy AHP-WASPAS model to evaluate public cloud computing services. Procedia Computer Science, 130, 504-509.
  • Ali, O., Soar, J., Yong, J., & Tao, X. (2016). Factors to be considered in cloud computing adoption. In Web Intelligence, 14(4), 309-323.
  • Badi, I., Abdulshahed, A. M., & Shetwan, A. (2018). A case study of supplier selection for a steelmaking company in Libya by using the Combinative Distance-based Assessment (CODAS) model, Decision Making: Applications in Management and Engineering, 1(1), 1-12.
  • Barron, F. H., & Barrett, B. E. (1996). Decision quality using ranked attribute weights, Management Science, 42(11), 1515-1523. Basu, A., & Ghosh, S. (2018). Implementing fuzzy TOPSIS in cloud type and service provider selection. Advances in Fuzzy Systems, 1-12.
  • Burda, D., & Teuteberg, F. (2016). Exploring consumer preferences in cloud archiving–a student's perspective. Behaviour & Information Technology, 35(2), 89-105.
  • Chang, V., Walters, R. J., & Wills, G. B. (2016). Organisational sustainability modelling—An emerging service and analytics model for evaluating Cloud Computing adoption with two case studies, International Journal of Information Management, 36(1), 167-179.
  • Choi, C. R., & Jeong, H. Y. (2014). Quality evaluation and best service choice for cloud computing based on user preference and weights of attributes using the analytic network process. Electronic Commerce Research, 14(3), 245-270.
  • El-Gazzar, R., Hustad, E., & Olsen, D. H. (2016). Understanding cloud computing adoption issues: A Delphi study approach. Journal of Systems and Software, 118, 64-84.
  • Fan, W., Yang, S., & Pei, J. (2014). A novel two‐stage model for cloud service trustworthiness evaluation. Expert Systems, 31(2), 136-153.
  • Ghorabaee, K. M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44.
  • Gireesha, O., Somu, N., Krithivasan, K., & VS, S. S. (2020). IIVIFS-WASPAS: an integrated multi-criteria decision-making perspective for cloud service provider selection. Future Generation Computer Systems, 103, 91-110.
  • Gutierrez, A., Boukrami, E., & Lumsden, R. (2015). Technological, organisational and environmental factors influencing managers’ decision to adopt cloud computing in the UK. Journal of Enterprise Information Management, 28(6), 788-807.
  • Henkoğlu, T., & Külcü, Ö. (2013). Bilgi erişim platformu olarak bulut bilişim: Riskler ve hukuksal koşullar üzerine bir inceleme. Bilgi Dünyası, 14(1), 62-86.
  • Hogan, M., Liu, F., Sokol, A., & Tong, J. (2011). Nist cloud computing standards roadmap. NIST Special Publication, 35, 6-11.
  • Jatoth, C., Gangadharan, G. R., Fiore, U., & Buyya, R. (2019). SELCLOUD: A hybrid multi-criteria decision-making model for selection of cloud services. Soft Computing, 23(13), 4701-4715.
  • Kumar, R. R., Mishra, S., & Kumar, C. (2017). Prioritizing the solution of cloud service selection using integrated MCDM methods under fuzzy environment. The Journal of Supercomputing, 73(11), 4652-4682.
  • Küçüksille, E., Özger, F., & Genç, S. (2013). Mobil bulut bilişim ve geleceği. Akademik Bilişim, 695-199.
  • Mishra, P. S., Maparu, T. S., & Muhuri, S. (2019, Aralık). Evaluation of ‘architectural and aesthetic value’of built heritage: a comparison of weightage methods, The International Conference on Future Cities-2019.
  • Lee, S., & Seo, K. K. (2016). A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications, 86(1), 57-75.
  • Paunović, M., Ralević, N. M., Gajović, V., Mladenović Vojinović, B., & Milutinović, O. (2018). Two-stage fuzzy logic model for cloud service supplier selection and evaluation. Mathematical Problems in Engineering, 1-11.
  • Papathanasiou, J., Kostoglou, V., & Petkos, D. (2015). A comparative analysis of cloud computing services using multicriteria decision analysis methodologies. International Journal of Information and Decision Sciences, 7(1), 51-70.
  • Roszkowska, E. (2013). Rank ordering criteria weighting methods–a comparative overview, Optimum Studia Ekonomiczne Nr 5(65), 14-33.
  • Sun, L., Ma, J., Zhang, Y., Dong, H., & Hussain, F. K. (2016). Cloud-FuSeR: Fuzzy ontology and MCDM based cloud service selection. Future Generation Computer Systems, 57, 42-55.
  • Tanoumand, N., Ozdemir, D. Y., Kilic, K., & Ahmed, F. (2017, Temmuz). Selecting cloud computing service provider with fuzzy AHP. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-5.
  • Turan, M. (2014). Bulut bilişim ve mali etkileri: Bulutta vergi, Bilgi Dünyası, 15(2), 296-326.
  • Vidhyalakshmi, R., & Kumar, V. (2016). Determinants of cloud computing adoption by SMEs. International Journal of Business Information Systems, 22(3), 375-395.
There are 26 citations in total.

Details

Primary Language English
Subjects Finance
Journal Section Business
Authors

Rahmi Baki 0000-0003-0981-5006

Publication Date January 26, 2022
Submission Date May 5, 2021
Acceptance Date August 25, 2021
Published in Issue Year 2022 Volume: 21 Issue: 1

Cite

APA Baki, R. (2022). Application of ROC and CODAS Techniques for Cloud Service Provider Selection. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 21(1), 217-230. https://doi.org/10.21547/jss.933287