Araştırma Makalesi
BibTex RIS Kaynak Göster

GROUP STRUCTURES OF ORNAMENTS ON HISTORIC MOSQUES IN OLD VAN CITY

Yıl 2018, Cilt: 2 Sayı: 1, 60 - 80, 30.06.2018

Öz

In this study, the group structures of ornaments and motifs on the historic mosques in the old city of Van have been determined. For this purpose, all the ornaments and motifs on these mosques have been examined. The twenty two kinds of ornaments and motifs obtained are classified according to the groups they belong to. It is seen that the majority of the ornaments belong to the third kind of symmetry group. 

In this study, the group structures of ornaments and motifs on the historic mosques in the old city of Van have been determined. For this purpose, all the ornaments and motifs on these mosques have been examined. The twenty two kinds of ornaments and motifs obtained are classified according to the groups they belong to. It is seen that the majority of the ornaments belong to the third kind of symmetry group. 

Kaynakça

  • Abdullahi Y., Mohamed Rashid Bin Embi, Evolution of Islamic Geometric Patterns, Frontiers of Architectural Research (2013).
  • Armstrong M. A. Groups and Symmetry, Springer Verlag, 1988, Berlin.
  • Bradley C. J. ve Cracknell A.P. The mathematial theory of symmetry in solids, Clarendon Press Oxford, 1972.
  • Birkhoff G.D. Aesthetic Measure, Hardward University Press, 1933.
  • Bixler H.M. A group-theoretic analysis of symmetry in two-dimensional patterns from Islamic art, Yayımlanmamış doktora tezi, New York University, 1980.
  • Clarke A.S.D., Green P.R., Halley , Chantler F.M.J. Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity, Symmetry 3, 246-264, 2011.
  • Dabbour L.M., Geometric proportions: The underlying structure of design process for Islamic geometric patterns, Frontiers of Architectural Research, 2012, 380-391.
  • Griffith J.S., The Irreducible Tensor Method for Molecular Symmetry Groups, New Jersey 1962, Prentice-hall, INC.
  • Grünbaum B., What symmetry groups are present in the Alhambra?, Notices of the AMS, 53, 6, 670-673, 2006.
  • Grünbaum B. ve Shepard G.C., Tilings and Patterns, Freeman, 1987.
  • Holden A., Shapes, Space and Symmetry, Dover Publications, 1991, London.
  • Necefoğlu H. Crystallographic Patterns in Nature and Turkish Art, Crystal Engineering 6 (2003) 153-166.
  • Niman J. ve Jane Norman, Mathematics and Islamic Art, The American Mathematical Monthly, Vol 85, No.6, 489-490, 1978.
  • Othman R., Zainal Abidin Z.J., The Importance of Islamic Art in Mosque Interior, Procedia Engineering 20, (2011), 105-109.
  • Özdural A., Mathematics and Arts Connections between Theory and Practise in the Medival Islamic Word, Historia Mathematica 27( 2000) 171-201.
  • Özgan S.Y., M. Özkar A Thirteenth-Century Dodecahedron in Central Anatolia: Geometric Patterns and Polyhedral Geometry, Nexus Network Journal.
  • Perez-Gomez R., The four regular mosaics missing in the Alhambra, Comput. Math. Applic. Vol. 14, No. 2 pp. 133-137, 1987.
  • Rozsa E. , Symmetry in Muslim Arts Comp. Maths. with Appls Vol. 12B 725-750 (1986).
  • Speiser A., Die Theore der Gruppen Von Endlicher Ordnung, Springer-Verlag Berlin Heidelberg Gmbh 1923.
  • Spindler K., Abstract Algebra With Applications, Marcel Dekker Inc. New York 1994.
  • Washburn D., Crowe Symmetries Culture University of Washington Press, 1998.
  • Wondratschek H. and Ulrich M., International tables for crystallography, Kluwer Academic Publisher, London,2004.
  • Young G.D., Euclidean Geometry in the Mathematical Tradition of Islamic India. Historia Mathematica 22, (1995), 138-153.
  • Van İl Kültür ve Turizm Müdürlüğü (2013). Van'ın Değerleri Kaya Çelebi Camii, [Çevrim –içi:http://www.vankulturturizm.gov.tr/TR,76449/kaya-celebi-camii.html], (Erişim tarihi: 1 Kasım 2017).
  • Van Rehberi (2016) Kızıl Minareli Camii, [Çevrim–içi:http://vanrehberi.com/tr/blog/2016/01/07/camiler/], (Erişim tarihi: 1 Kasım 2017).

ESKİ VAN ŞEHRİ TARİHİ CAMİLERİNDEKİ SÜSLEMELERİN GRUP YAPILARI

Yıl 2018, Cilt: 2 Sayı: 1, 60 - 80, 30.06.2018

Öz

Bu çalışmada eski Van şehrinde yer alan tarihi camilerdeki süsleme ve motiflerin grup yapıları belirlenmiştir. Bu amaçla bu camilerdeki mevcut bütün süsleme ve motifler incelenmiştir. Elde edilen yirmi iki tür süsleme ve motif, ait oldukları gruplara göre sınıflandırılmıştır. Süslemelerin çoğunluğunun üçüncü tür simetri grubuna ait olduğu görülmüştür.Matematik sadece fen bilimleriyle ilişkili olan bir bilim dalı değildir. Matematik aynı zamanda birçok sosyal bilimlerde karşılaşılan problemleri ve olguları açıklamakta başvurulan temel bir bilimdir. Matematik bütün sanatları genelleyen bir bilim olarak düşünülebilir (Bixler, 1980) Doğada, sanatta ve hayatın diğer alanlarında simetrinin farklı türlerini görebiliriz (Birkhoff, 1933). Özellikle bu simetrilere tarihi camilerin süsleme ve kabartmalarında daha çok rastlarız (Abdullahi ve Embi, 2013). 

Kaynakça

  • Abdullahi Y., Mohamed Rashid Bin Embi, Evolution of Islamic Geometric Patterns, Frontiers of Architectural Research (2013).
  • Armstrong M. A. Groups and Symmetry, Springer Verlag, 1988, Berlin.
  • Bradley C. J. ve Cracknell A.P. The mathematial theory of symmetry in solids, Clarendon Press Oxford, 1972.
  • Birkhoff G.D. Aesthetic Measure, Hardward University Press, 1933.
  • Bixler H.M. A group-theoretic analysis of symmetry in two-dimensional patterns from Islamic art, Yayımlanmamış doktora tezi, New York University, 1980.
  • Clarke A.S.D., Green P.R., Halley , Chantler F.M.J. Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity, Symmetry 3, 246-264, 2011.
  • Dabbour L.M., Geometric proportions: The underlying structure of design process for Islamic geometric patterns, Frontiers of Architectural Research, 2012, 380-391.
  • Griffith J.S., The Irreducible Tensor Method for Molecular Symmetry Groups, New Jersey 1962, Prentice-hall, INC.
  • Grünbaum B., What symmetry groups are present in the Alhambra?, Notices of the AMS, 53, 6, 670-673, 2006.
  • Grünbaum B. ve Shepard G.C., Tilings and Patterns, Freeman, 1987.
  • Holden A., Shapes, Space and Symmetry, Dover Publications, 1991, London.
  • Necefoğlu H. Crystallographic Patterns in Nature and Turkish Art, Crystal Engineering 6 (2003) 153-166.
  • Niman J. ve Jane Norman, Mathematics and Islamic Art, The American Mathematical Monthly, Vol 85, No.6, 489-490, 1978.
  • Othman R., Zainal Abidin Z.J., The Importance of Islamic Art in Mosque Interior, Procedia Engineering 20, (2011), 105-109.
  • Özdural A., Mathematics and Arts Connections between Theory and Practise in the Medival Islamic Word, Historia Mathematica 27( 2000) 171-201.
  • Özgan S.Y., M. Özkar A Thirteenth-Century Dodecahedron in Central Anatolia: Geometric Patterns and Polyhedral Geometry, Nexus Network Journal.
  • Perez-Gomez R., The four regular mosaics missing in the Alhambra, Comput. Math. Applic. Vol. 14, No. 2 pp. 133-137, 1987.
  • Rozsa E. , Symmetry in Muslim Arts Comp. Maths. with Appls Vol. 12B 725-750 (1986).
  • Speiser A., Die Theore der Gruppen Von Endlicher Ordnung, Springer-Verlag Berlin Heidelberg Gmbh 1923.
  • Spindler K., Abstract Algebra With Applications, Marcel Dekker Inc. New York 1994.
  • Washburn D., Crowe Symmetries Culture University of Washington Press, 1998.
  • Wondratschek H. and Ulrich M., International tables for crystallography, Kluwer Academic Publisher, London,2004.
  • Young G.D., Euclidean Geometry in the Mathematical Tradition of Islamic India. Historia Mathematica 22, (1995), 138-153.
  • Van İl Kültür ve Turizm Müdürlüğü (2013). Van'ın Değerleri Kaya Çelebi Camii, [Çevrim –içi:http://www.vankulturturizm.gov.tr/TR,76449/kaya-celebi-camii.html], (Erişim tarihi: 1 Kasım 2017).
  • Van Rehberi (2016) Kızıl Minareli Camii, [Çevrim–içi:http://vanrehberi.com/tr/blog/2016/01/07/camiler/], (Erişim tarihi: 1 Kasım 2017).
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Süleyman Ediz

Şenol Kaya Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 2 Sayı: 1

Kaynak Göster

APA Ediz, S., & Kaya, Ş. (2018). ESKİ VAN ŞEHRİ TARİHİ CAMİLERİNDEKİ SÜSLEMELERİN GRUP YAPILARI. Sosyal Ve Beşeri Bilimler Dergisi, 2(1), 60-80.