Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 3, 429 - 455
https://doi.org/10.25307/jssr.1591617

Abstract

Project Number

This study was produced from the Phytech Youth Project, which was accepted within the scope of the European Union Erasmus+ KA210 Cooperation Partnerships in the Field of Youth project.

References

  • REFERENCES Ahraz, A. O., Çar, B., & Cengiz, C. (2021). Fiziksel aktivitenin arttırılmasına yönelik dijital teknolojiler hakkında literatür taraması: 2010-2020. SPORMETRE Beden Eğitimi ve Spor Bilimleri Dergisi, 19(3), 218–232. [CrossRef]
  • Ali, H. I., Attlee, A., Alhebshi, S., Elmi, F., Al Dhaheri, A. S., Stojanovska, L., & Platat, C. (2021). Feasibility study of a newly developed technology-mediated lifestyle intervention for overweight and obese young adults. Nutrients, 13(8), Article 2547. [CrossRef]
  • Alinia, P., Cain, C., Fallahzadeh, R., Shahrokni, A., Cook, D., & Ghasemzadeh, H. (2017). How accurate is your activity tracker? A comparative study of step counts in low-intensity physical activities. JMIR mHealth and uHealth, 5(8), Article 106. [CrossRef]
  • Al-Nawaiseh, H. K., McIntosh, W. A., & McKyer, L. J. (2022). An m-health intervention using smartphone app to improve physical activity in college students: A randomized controlled trial. International Journal of Environmental Research and Public Health, 19(12), Article 7228. [CrossRef]
  • Alshahrani, A., Siddiqui, A., Khalil, S., Farag, S., Alshahrani, N., Alsabaani, A., & Korairi, H. (2021). WhatsApp-based intervention for promoting physical activity among female college students, Saudi Arabia: A randomized controlled trial. Eastern Mediterranean Health Journal, 27(8), 782-789. [CrossRef]
  • Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., & Jordan, Z. (Eds.). (2024). JBI Manual for Evidence Synthesis. JBI. [CrossRef]
  • Arumugam, A., Mohammad Zadeh, S. A., Zabin, Z. A., Hawarneh, T. M. E., Ahmed, H. I., Jauhari, F. S., Alkalih, H. Y., Shousha, T. M., Moustafa, I. M., & Häger, C. K. (2023). Sedentary and physical activity time differs between self-reported ATLS-2 physical activity questionnaire and accelerometer measurements in adolescents and young adults in the United Arab Emirates. BMC Public Health, 23(1), Article 1045. [CrossRef]
  • Ashton, L. M., Morgan, P. J., Hutchesson, M. J., Rollo, M. E., & Collins, C. E. (2017). Feasibility and preliminary efficacy of the 'HEYMAN' healthy lifestyle program for young men: A pilot randomized controlled trial. Nutrition Journal, 16(1), Article 2. [CrossRef]
  • Au, W. W., Recchia, F., Fong, D. Y., Wong, S. H. S., Chan, D. K. C., Capio, C. M., Yu, C. C. W., Wong, S. W. S., Sit, C. H. P., Ip, P., Chen, Y. J., Thompson, W. R., & Siu, P. M. (2024). Effect of wearable activity trackers on physical activity in children and adolescents: a systematic review and meta-analysis. The Lancet. Digital health, 6(9), e625–e639. [CrossRef]
  • Badau, D., & Badau, A. (2018). Identifying the incidence of exercise dependence attitudes, levels of body perception, and preferences for use of fitness technology monitoring. International Journal of Environmental Research and Public Health, 15(12), Article 2614. [CrossRef]
  • Bailey, A. P., Mougharbel, F., Goldfield, G. S., & Klentrou, P. (2020). Mental health benefits of physical activity interventions in children and adolescents: A systematic review and meta-analysis. Journal of Adolescent Health, 67(6), 798–806. [CrossRef]
  • Battista, R. A., & West, S. T. (2018). The use of geocaching as a form of physical activity in youth. American Journal of Health Education, 49(3), 125–132. [CrossRef]
  • Battista, R. A., West, S. T., Mackenzie, S. H., & Son, J. (2016). Is this exercise? No, it’s geocaching! Exploring factors related to aspects of geocaching participation. Journal of Park and Recreation Administration, 34(2), 125-132. [CrossRef]
  • Belbasis, L., Bellou, V., & Ioannidis, J. P. A. (2022). Conducting umbrella reviews. BMJ Medicine, 1(1), Article 000071. [CrossRef]
  • Benítez Andrades, J.A., Arias, N., García Ordás, M.T., Martínez Martínez, M., & García Rodríguez, I. (2024). Feasibility of social network based ehealth intervention on the improvement of healthy habits among children. Sensors, 20(5), Article 1404. [CrossRef]
  • Benzo, R. M., Singh, R., Presley, C. J., Tetrick, M. K., Chaplow, Z. L., Hery, C. M., ... & Fortune, E. (2025). Comparing the accuracy of different wearable activity monitors in patients with lung cancer and providing initial recommendations: Protocol for a pilot validation study. JMIR Research Protocols, 14(1), Article 70472. [CrossRef]
  • Bi, S., Yuan, J., Wang, Y., Zhang, W., Zhang, L., Zhang, Q., & Zhu, R. (2024). Effectiveness of digital health interventions in promoting physical activity among college students: Systematic review and meta-analysis. Journal of Medical Internet Research, 26, Article 51714 [CrossRef]
  • Biddle, S. J. H., & Mutrie, N. (2007). Psychology of physical activity: Determinants, well-being and interventions (2nd ed.). Routledge.
  • Bravata, D. M., Smith-Spangler, C., Sundaram, V., Gienger, A. L., Lin, N., Lewis, R., ... & Sirard, J. R. (2007). Using pedometers to increase physical activity and improve health: A systematic review. JAMA, 298(19), 2296–2304. [CrossRef]
  • Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), Article 11819. [CrossRef]
  • Burin, D., Liu, Y., Yamaya, N., & Kawashima, R. (2020). Virtual training leads to physical, cognitive, and neural benefits in healthy adults. NeuroImage, 222, Article 117297. [CrossRef]
  • Busch, L., Utesch, T., & Strauss, B. (2022). Normalised step targets in fitness apps affect users’ autonomy need satisfaction, motivation and physical activity—a six-week RCT. International Journal of Sport and Exercise Psychology, 20(1), 223–244. [CrossRef]
  • Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6), 625–626. [CrossRef]
  • CASP. (2018). CASP qualitative checklist. Critical appraisal skills programme. Oxford.
  • Cavallo, D. N., Tate, D. F., Ries, A. V., Brown, J. D., DeVellis, R. F., & Ammerman, A. S. (2012). A social media-based physical activity intervention: A randomized controlled trial. American Journal of Preventive Medicine, 43(5), 527–532. [CrossRef]
  • Cellini, N., McDevitt, E. A., Mednick, S. C., & Buman, M. P. (2016). Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiology & Behavior, 157, 79–86. [CrossRef]
  • Chiang, T. L., Chen, C., Hsu, C. H., Lin, Y. C., & Wu, H. J. (2019). Is the goal of 12,000 steps per day sufficient for improving body composition and metabolic syndrome? The necessity of combining exercise intensity: A randomized controlled trial. BMC Public Health, 19(1), Article 1215. [CrossRef]
  • Chung, A. E., Skinner, A. C., Hasty, S. E., & Perrin, E. M. (2017). Tweeting to health: A novel mHealth intervention using Fitbits and Twitter to foster healthy lifestyles. Clinical Pediatrics, 56(1), 26–32. [CrossRef]
  • Conroy, D. E., Wu, J., Lee, A. M., Brunke-Reese, D., & Lagoa, C. M. (2023). Dose-response relations between the frequency of two types of momentary feedback prompts and daily physical activity. Health Psychology, 42(3), 151–160. [CrossRef]
  • Cotie, P., Willms, A., & Liu, S. (2025). Implementation of behavior change theories and techniques for physical activity just-in-time adaptive interventions: A Scoping Review. IJERPH, 22(7), 1-24. [CrossRef]
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
  • Curtis, R. G., Ryan, J. C., Edney, S. M., & Maher, C. A. (2020). Can Instagram be used to deliver an evidence-based exercise program for young women? A process evaluation. BMC Public Health, 20, Article 1506. [CrossRef]
  • Daniels, K., Quadflieg, K., & Bonnechère, B. (2025). Mobile health interventions for active aging: a systematic review and meta-analysis on the effectiveness of physical activity promotion. mHealth, 11(4), 14-41. [CrossRef]
  • De Meester, F., De Bourdeaudhuij, I., Deforche, B., Ottevaere, C., & Cardon, G. (2011). Measuring physical activity using accelerometry in 13–15-year-old adolescents: The importance of including non-wear activities. Public Health Nutrition, 14(12), 2124–2133. [CrossRef]
  • Depper, A., & Howe, P. D. (2016). Are we fit yet? English adolescent girls’ experiences of health and fitness apps. Health Sociology Review, 26(1), 98–112. [CrossRef]
  • Dieu, O., Mikulovic, J., Fardy, P. S., Bui-Xuan, G., Béghin, L., & Vanhelst, J. (2017). Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 37(5), 525–529. [CrossRef]
  • Direito, A., Jiang, Y., Whittaker, R., & Maddison, R. (2015). Apps for improving fitness and increasing physical activity among young people: The AIMFIT pragmatic randomized controlled trial. Journal of Medical Internet Research, 17(8), Article 210. [CrossRef]
  • Domin, A., Uslu, A., Schulz, A., Ouzzahra, Y., & Vögele, C. (2022). A theory-informed, personalized mHealth intervention for adolescents (Mobile App for Physical Activity): Development and pilot study. JMIR Formative Research, 6(6), Article 35118. [CrossRef]
  • Durant, N. H., Joseph, R. P., Cherrington, A., Cuffee, Y., Knight, B., Lewis, D., Jr., & Allison, J. J. (2014). Recommendations for a culturally relevant Internet-based tool to promote physical activity among overweight young African American women, Alabama, 2010–2011. Preventing Chronic Disease, 11, Article 130169. [CrossRef]
  • Eaton, C., Vallejo, N., McDonald, X., Wu, J., Rodríguez, R., Muthusamy, N., ... & Riekert, K. A. (2024). User engagement with mHealth interventions to promote treatment adherence and self-management in people with chronic health conditions: systematic review. Journal of Medical Internet Research, 26, Article 50508. [CrossRef]
  • Eisenberg, M. H., Phillips, L. A., Fowler, L., & Moore, P. J. (2017). The impact of E-diaries and accelerometers on young adults' perceived and objectively assessed physical activity. Psychology of Sport and Exercise, 30, 55–63. [CrossRef]
  • Edney, S., Ryan, J. C., Olds, T., Monroe, C., Fraysse, F., Vandelanotte, C., ... & Maher, C. (2019). User engagement and attrition in an app-based physical activity intervention: Secondary analysis of a randomized controlled trial. Journal of medical Internet Research, 21(11), Article 14645. [CrossRef]
  • Erdoganoğlu, Y., & Arslan, B. C. (2019). The effect of smartphone usage on physical capacity in young people. Anadolu Psikiyatri Dergisi, 20(5), 499-505. [CrossRef]
  • Evans, E., Naugle, K., Ovispo, A., Kaleth, A., Arnold, B., & Naugle, K. (2021). Virtual reality and its effect on physical activity intensity in young healthy adults. Medicine & Science in Sports & Exercise, 53(8S), Article 776. [CrossRef]
  • Farič, N., Yorke, E., Varnes, L., Newby, K., Potts, H. W., Smith, L., Hon, A., Steptoe, A., & Fisher, A. (2019). Younger adolescents' perceptions of physical activity, exergaming, and virtual reality: Qualitative intervention development study. JMIR Serious Games, 7(2), Article 11960. [CrossRef]
  • Feodoroff, B., Konstantinidis, I., & Froböse, I. (2019). Effects of full body exergaming in virtual reality on cardiovascular and muscular parameters: Cross-sectional experiment. JMIR Serious Games, 7(3), Article 12324. [CrossRef]
  • França, C., Ashraf, S., Santos, F., Dionísio, M., Ihle, A., Marques, A., de Maio Nascimento, M., & Gouveia, É. R. (2024). Estimated energy expenditure in youth while playing active video games: A systematic review. Sports, 12(2), Article 39. [CrossRef]
  • Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., ... & Taylor, N. G. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR mHealth and uHealth, 8(9), Article 18694. [CrossRef]
  • Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., Hinder, S., ... & Shaw, S. (2017). Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. Journal of Medical Internet Research, 19(11), Article 8775. [CrossRef]
  • Grimaldi-Puyana, M., Fernández-Batanero, J. M., Fennell, C., & Sañudo, B. (2020). Associations of objectively-assessed smartphone use with physical activity, sedentary behavior, mood, and sleep quality in young adults: A cross-sectional study. International Journal of Environmental Research and Public Health, 17(10), Article 3499. [CrossRef]
  • Gowin, M., Cheney, M., Gwin, S., & Franklin Wann, T. (2015). Health and fitness app use in college students: a qualitative study. American Journal of Health Education, 46(4), 223-230. [CrossRef]
  • Hahn, S. L., Kramer-Kostecka, E. N., Hazzard, V. M., Barr-Anderson, D. J., Larson, N., & Neumark-Sztainer, D. (2023). Weight-related self-monitoring app use among emerging adults is cross-sectionally associated with amount and type of physical activity and screen time. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 60, 1-10. [CrossRef]
  • Han, H., Kim, H., Sun, W., Malaska, M., & Miller, B. (2020). Validation of wearable activity monitors for real-time cadence. Journal of Sports Sciences, 38(4), 383–389. [CrossRef]
  • Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane Handbook for Systematic Reviews of Interventions (Version 6.3). Cochrane.
  • Hojjatinia, S., Hojjatinia, S., Lagoa, C. M., Brunke-Reese, D., & Conroy, D. E. (2021). Person-specific dose-finding for a digital messaging intervention to promote physical activity. Health Psychology, 40(8), 502–512. [CrossRef]
  • Hojjatinia, S., Lee, A. M., Hojjatinia, S., Lagoa, C. M., Brunke-Reese, D., & Conroy, D. E. (2022). Physical activity dynamics during a digital messaging intervention changed after the pandemic declaration. Annals of Behavioral Medicine, 56(11), 1188–1198. [CrossRef]
  • Honary, M., Bell, B. T., Clinch, S., Wild, S. E., & McNaney, R. (2019). Understanding the role of healthy eating and fitness mobile apps in the formation of maladaptive eating and exercise behaviors in young people. JMIR mHealth and uHealth, 7(6), Article 14239. [CrossRef]
  • Höchsmann, C., Knaier, R., Infanger, D., & Schmidt-Trucksäss, A. (2020). Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiological Measurement, 41(1), Article 015001. [CrossRef]
  • Huberty, J., Green, J., Glissmann, C., Larkey, L., Puzia, M., & Lee, C. (2019). Efficacy of the mindfulness meditation mobile app "Calm" to reduce stress among college students: Randomized controlled trial. JMIR mHealth and uHealth, 7(6), Article 14273. [CrossRef]
  • Ibrahim, S. T., Patel, J., & Katapally, T. R. (2023). Digital citizen science for ethical surveillance of physical activity among youth: Mobile ecological momentary assessments vs. retrospective recall. arXiv 1, 1-24. [CrossRef]
  • Iwakura, M., Ozeki, C., Jung, S., Yamazaki, T., Miki, T., Nohara, M., & Nomura, K. (2025). An umbrella review of efficacy of digital health interventions for workers. NPJ Digital Medicine, 8(1), Article 207. [CrossRef]
  • Johnston, J. D., Massey, A. P., & Marker-Hoffman, R. L. (2012). Using an alternate reality game to increase physical activity and decrease obesity risk of college students. Journal of Diabetes Science and Technology, 6(4), 828–838. [CrossRef]
  • Jong, S. T., & Drummond, M. J. (2016). Hurry up and ‘like’me: Immediate feedback on social networking sites and the impact on adolescent girls. Asia-Pacific Journal of Health, Sport and Physical Education, 7(3), 251-267. [CrossRef]
  • Jung, C. K., Kim, J., & Rhim, H. C. (2023). Validation of an ear-worn wearable gait analysis device. Sensors, 23(3), Article 1244. [CrossRef]
  • Kardan, M., Jung, A., Iqbal, M., Keshtkar, S., Geidl, W., & Pfeifer, K. (2024). Efficacy of digital interventions on physical activity promotion in individuals with noncommunicable diseases: An overview of systematic reviews. BMC Digital Health, 2(1), Article 40. [CrossRef]
  • Klein, M. C., Manzoor, A., & Mollee, J. S. (2017). Active2Gether: A personalized m-health intervention to encourage physical activity. Sensors, 17(6), Article 1436. [CrossRef]
  • Kellner, M., Dold, C., & Lohkamp, M. (2023). Objectively assessing the effect of a messenger-based intervention to reduce sedentary behavior in university students: A pilot study. Journal of Prevention, 44(5), 521–534. [CrossRef]
  • Kendall, B., Bellovary, B., & Gothe, N. P. (2019). Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test. Journal of Sports Sciences, 37(1), 42–49. [CrossRef]
  • Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdés-Ramírez, G., Paixão, T. R., ... & Wang, J. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 74, 1061-1068. [CrossRef]
  • Kim, B. H., & Lee, H. (2022). Associations between smartphone use for physical activity by South Korean college students and behavioral change constructs of the transtheoretical model. Perceptual and Motor Skills, 129(4), 1270–1282. [CrossRef]
  • König, R., Seifert, A., & Doh, M. (2018). Internet use among older Europeans: An analysis based on SHARE data. Universal Access in the Information Society, 17(3), 621-633. [CrossRef]
  • Kurz, D., Irwin, B., Chalin, P., & Thompson, N. (2016). Testing the efficacy of OurSpace, a brief, group dynamics-based physical activity intervention: A randomized controlled trial. Journal of Medical Internet Research, 18(4), Article 87. [CrossRef]
  • Laranjo, L., Quiroz, J. C., Tong, H. L., Arevalo-Bazalar, M., & Coiera, E. (2020). A mobile social networking app for weight management and physical activity promotion: Results from an experimental mixed methods study. Journal of Medical Internet Research, 22(12), Article 19991. [CrossRef]
  • Le, S., Wang, X., Zhang, T., Lei, S. M., Cheng, S., Yao, W., & Schumann, M. (2022). Validity of three smartwatches in estimating energy expenditure during outdoor walking and running. Frontiers in Physiology, 13, Article 995575. [CrossRef]
  • Lewis, Z. H., Lyons, E. J., Jarvis, J. M., & Baillargeon, J. (2015). Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health, 15, Article 585. [CrossRef]
  • Liu, W., Zeng, N., Pope, Z. C., McDonough, D. J., & Gao, Z. (2019). Acute effects of immersive virtual reality exercise on young adults' situational motivation. Journal of Clinical Medicine, 8(11), Article 1947. [CrossRef]
  • Lupton, D. (2020). Australian women’s use of health and fitness apps and wearable devices: a feminist new materialism analysis. Feminist Media Studies, 20(7), 983-998. [CrossRef]
  • Ma, Z., Gao, Q., Tian, Y., Chen, Y., & Yuan, Q. (2023). Effectiveness of cooperative and competitive gamification in mobile fitness applications among occasional exercisers. Behaviour & Information Technology, 43(11), 2401–2423. [CrossRef]
  • Maden, Ç., Bayramlar, K., Arıcak, O. T., & Yagli, N. V. (2022). Effects of virtual reality-based training and aerobic training on gaming disorder, physical activity, physical fitness, and anxiety: A randomized, controlled trial. Mental Health and Physical Activity, 23, Article 100465. [CrossRef]
  • Marquet, O., Alberico, C., Adlakha, D., & Hipp, J. A. (2017). Examining motivations to play Pokémon GO and their influence on perceived outcomes and physical activity. JMIR Serious Games, 5(4), Article 21. [CrossRef]
  • McClure, C., & Schofield, D. (2020). Running virtual: The effect of virtual reality on exercise. Journal of Human Sport and Exercise, 15(4), 861–870. [CrossRef]
  • Melton, B., Bland, H., Carpentier, A., Gonzales, J., & Catenacci, K. (2018). Enhancing psychosocial constructs associated with technology-based physical activity: A randomized trial among African American women. American Journal of Health Education, 49(2), 74–85. [CrossRef]
  • Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1), Article 42. [CrossRef]
  • Middelweerd, A., Te Velde, S. J., Mollee, J. S., Klein, M. C., & Brug, J. (2018). App-based intervention combining evidence-based behavior change techniques with a model-based reasoning system to promote physical activity among young adults (Active2Gether): Descriptive study of the development and content. JMIR Research Protocols, 7(12), Article 7169. [CrossRef]
  • Middelweerd, A., Mollee, J., Klein, M. M., Manzoor, A., Brug, J., & Te Velde, S. J. (2020). The use and effects of an app-based physical activity intervention "Active2Gether" in young adults: Quasi-experimental trial. JMIR Formative Research, 4(1), Article 12538. [CrossRef]
  • Mizuta, R., Maeda, N., Tashiro, T., Suzuki, Y., Kuroda, S., Ishida, A., Oda, S., Watanabe, T., Tamura, Y., Komiya, M., & Urabe, Y. (2024). Effectiveness of Metaverse space-based exercise video distribution in young adults: Randomized controlled trial. JMIR mHealth and uHealth, 12, Article 46397. [CrossRef] Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. [CrossRef]
  • Mora-Gonzalez, J., Navarro-Mateos, C., & Pérez-López, I. J. (2022). “STAR WARS™: The First Jedi” gamification program: Improvement of fitness among college students. Journal of Teaching in Physical Education, 42(3), 502–510. [CrossRef]
  • Namli, S., Özdemir, K., Sen, I., & Bedir, D. (2025). Virtual reality-supported video modeling for enhancing motor skill acquisition in swimming. BMC Sports Science, Medicine and Rehabilitation, 17(1), 1-15. [CrossRef]
  • Napolitano, M. A., Lynch, S. B., Mavredes, M., Shambon, B., & Posey, L. (2020). Evaluating an interactive digital intervention for college weight gain prevention. Journal of Nutrition Education and Behavior, 52(9), 890–897. [CrossRef]
  • Nathan, D., Huynh, du Q., Rubenson, J., & Rosenberg, M. (2015). Estimating physical activity energy expenditure with the Kinect Sensor in an exergaming environment. PLOS ONE, 10(5), Article 0127113. [CrossRef]
  • Nuss, K. J., Thomson, E. A., Courtney, J. B., Comstock, A., Reinwald, S., Blake, S., E, R., Tracy, B. L., & Li, K. (2019). Assessment of accuracy of overall energy expenditure measurements for the fitbit charge HR 2 and Apple watch. American Journal of Health Behavior, 43(3), 498–505. [CrossRef]
  • Peng, W., Pfeiffer, K. A., Winn, B., Lin, J. H., & Suton, D. (2015). A pilot randomized, controlled trial of an active video game physical activity intervention. Health Psychology, 34(Suppl), 1229–1239. [CrossRef]
  • Perski, O., Blandford, A., West, R., & Michie, S. (2017). Conceptualising engagement with digital behaviour change interventions: A systematic review using principles from critical interpretive synthesis. Translational Behavioral Medicine, 7(2), 254–267. [CrossRef]
  • Polechoński, J., Zwierzchowska, A., Makioła, Ł., Groffik, D., & Kostorz, K. (2022). Handheld weights as an effective and comfortable way to increase exercise intensity of physical activity in virtual reality: Empirical study. JMIR Serious Games, 10(4), Article 39932. [CrossRef]
  • Pope, Z. C., Barr-Anderson, D. J., Lewis, B. A., Pereira, M. A., & Gao, Z. (2019). Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: A 12-week randomized pilot study. International Journal of Environmental Research and Public Health, 16(19), Article 3579. [CrossRef]
  • Pyky, R., Koivumaa-Honkanen, H., Leinonen, A. M., Ahola, R., Hirvonen, N., Enwald, H., ... & Korpelainen, R. (2017). Effect of tailored, gamified, mobile physical activity intervention on life satisfaction and self-rated health in young adolescent men: A population-based, randomized controlled trial (MOPO study). Computers in Human Behavior, 72, 13–22. [CrossRef]
  • Ráthonyi, G., Ráthonyi-Odor, K., Bendíková, E., & Bába, É. B. (2019). Wearable activity trackers usage among university students. European Journal of Contemporary Education, 8(3), 600–612. [CrossRef]
  • Reese, J. M., Joseph, R. P., Cherrington, A., Allison, J., Kim, Y. I., Spear, B., Childs, G., Simpson, T., & Durant, N. H. (2017). Development of participant-informed text messages to promote physical activity among African American women attending college: A qualitative mixed-methods inquiry. Journal of Transcultural Nursing, 28(3), 236–242. [CrossRef]
  • Roure, C., Pasco, D., Benoît, N., & Deldicque, L. (2020). Impact of a design-based bike exergame on young adults' physical activity metrics and situational interest. Research Quarterly for Exercise and Sport, 91(2), 309–315. [CrossRef]
  • Russell, E., Kirk, A., Dunlop, M. D., Hodgson, W., Patience, M., & Egan, K. (2025). Digital physical activity and sedentary behavior interventions for community-living adults: umbrella review. Journal of Medical Internet Research, 27, Article 66294. [CrossRef]
  • Saiz-Gonzalez, P., McDonough, D. J., Liu, W., & Gao, Z. (2023). Acute effects of virtual reality exercise on young adults’ blood pressure and feelings. International Journal of Mental Health Promotion, 25(5), 711–719. [CrossRef]
  • San Giovanni, C. B., Dawley, E., Pope, C., Steffen, M., & Roberts, J. (2021). The doctor will "friend" you now: A qualitative study on adolescents' preferences for weight management app features. Southern Medical Journal, 114(7), 373–379. [CrossRef]
  • Sattar, M. U., Palaniappan, S., Lokman, A., Hassan, A., Shah, N., & Riaz, Z. (2019). Effects of virtual reality training on medical students’ learning motivation and competency. Pakistan Journal of Medical Sciences, 35(3), 852-857. [CrossRef]
  • Schwarz, A., Winkens, L. H., de Vet, E., Ossendrijver, D., Bouwsema, K., & Simons, M. (2023). Design features associated with engagement in mobile health physical activity interventions among youth: systematic review of qualitative and quantitative studies. JMIR mHealth and uHealth, 11, Article 40898. [CrossRef]
  • Schweitzer, A. L., Ross, J. T., Klein, C. J., Lei, K. Y., & Mackey, E. R. (2016). An electronic wellness program to improve diet and exercise in college students: A pilot study. JMIR Research Protocols, 5(1), Article 29. [CrossRef]
  • Shea, B. J., Grimshaw, J. M., Wells, G. A., Boers, M., Andersson, N., Hamel, C., ... & Bouter, L. M. (2007). Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Medical Research Methodology, 7, Article 10. [CrossRef]
  • Simons, D., De Bourdeaudhuij, I., Clarys, P., De Cocker, K., Vandelanotte, C., & Deforche, B. (2018). Effect and process evaluation of a smartphone app to promote an active lifestyle in lower educated working young adults: Cluster randomized controlled trial. JMIR mHealth and uHealth, 6(8), Article e10003. [CrossRef]
  • Sousa, A. C., Ferrinho, S. N., & Travassos, B. (2023). The use of wearable technologies in the assessment of physical activity in preschool-and school-age youth: Systematic review. International Journal of Environmental Research and Public Health, 20(4), Article 3402. [CrossRef]
  • Stephens, J., Allen, J., & Dennison Himmelfarb, C. (2017a). “Smart” goals and physical activity intervention in African Americans: A randomized trial. PLOS ONE, 12(12), Article 0189011. [CrossRef]
  • Stephens, J. D., Yager, A. M., & Allen, J. (2017b). Smartphone technology and text messaging for weight loss in young adults: a randomized controlled trial. Journal of Cardiovascular Nursing, 32(1), 39-46. [CrossRef]
  • Stewart, M. T., Nezich, T., Lee, J. M., Hasson, R. E., & Colabianchi, N. (2021). Using a mobile phone app to analyze the relationship between planned and performed physical activity in university students: Observational study. JMIR mHealth and uHealth, 9(4), Article 17581. [CrossRef]
  • Stork, M. J., Bell, E. G., & Jung, M. E. (2021). Examining the impact of a mobile health app on functional movement and physical fitness: Pilot pragmatic randomized controlled trial. JMIR mHealth and uHealth, 9(5), Article 24076. [CrossRef]
  • Sun, X., Wang, Z., Fu, X., Zhao, C., Wang, F., & He, H. (2023). Validity of Apple Watch 6 and Polar A370 for monitoring energy expenditure while resting or performing light to vigorous physical activity. Journal of Science and Medicine in Sport, 26(9), 482–486. [CrossRef]
  • Szary, P., Kiper, P., Buchta, K., Bedrunka, D., Zabłotni, S., Rutkowska, A., ... & Rutkowski, S. (2020). Investigating exercise intensity in virtual reality among healthy volunteers. Human Movement, 21(4), 54–60. [CrossRef]
  • Tayler, W. B., LeCheminant, J. D., Price, J., & Tadje, C. P. (2022). The effect of wearable activity monitor presence on step counts. American Journal of Health Behavior, 46(4), 347–357. [CrossRef]
  • Thomson, E. A., Nuss, K., Comstock, A., Reinwald, S., Blake, S., Pimentel, R. E., Tracy, B. L., & Li, K. (2019). Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of Sports Sciences, 37(12), 1411–1419. [CrossRef]
  • Tobin, M. M., Jones, T. L., Ho, Y. S. H., & Short, C. E. (2023). Using photovoice to explore young women's experiences of behaviour change techniques in physical activity mobile apps. The International Journal of Behavioral Nutrition and Physical Activity, 20(1), Article 43. [CrossRef]
  • Tong, H. L., Quiroz, J. C., Kocaballi, A. B., Ijaz, K., Coiera, E., Chow, C. K., & Laranjo, L. (2022). A personalized mobile app for physical activity: An experimental mixed-methods study. Digital Health, 8, 1-13. [CrossRef]
  • Tong, A., Sainsbury, P., & Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19(6), 349–357. [CrossRef]
  • Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. [CrossRef]
  • Turner, T., & Hingle, M. (2017). Evaluation of a mindfulness-based mobile app aimed at promoting awareness of weight-related behaviors in adolescents: A pilot study. JMIR Research Protocols, 6(4), Article e67. [CrossRef]
  • Ulas, K., & Semin, I. (2021). The biological and motivational effects of aerobic exercise with virtual reality. Research Quarterly for Exercise and Sport, 92(3), 321–326. [CrossRef]
  • Walsh, J. C., Corbett, T., Hogan, M., Duggan, J., & McNamara, A. (2016). An mHealth intervention using a smartphone app to increase walking behavior in young adults: A pilot study. JMIR mHealth and uHealth, 4(3), Article 109. [CrossRef]
  • Wang, Q., Egelandsdal, B., Amdam, G. V., Almli, V. L., & Oostindjer, M. (2016). Diet and physical activity apps: Perceived effectiveness by app users. JMIR mHealth and uHealth, 4(2), Article 33. [CrossRef]
  • West, D. S., Monroe, C. M., Turner-McGrievy, G., Sundstrom, B., Larsen, C., Magradey, K., Wilcox, S., & Brandt, H. M. (2016). A technology-mediated behavioral weight gain prevention intervention for college students: Controlled, quasi-experimental study. Journal of Medical Internet Research, 18(6), Article 133. [CrossRef]
  • Widawska-Stanisz, A. (2020). Use of modern technologies as a tool to support measures promoting physical activity–differences according to the gender of respondents. Journal of Physical Education and Sport, 20(5), 3002–3009. [CrossRef]
  • Winand, M., Ng, A., & Byers, T. (2020). Pokémon “Go” but for how long?: A qualitative analysis of motivation to play and sustainability of physical activity behavior in young adults using mobile augmented reality. Managing Sport and Leisure, 27(5), 421–438. [CrossRef]
  • WHO. (World Health Organization) (2022). Global status report on physical activity 2022: Country profiles. World Health Organization.
  • Yan, A. F., Stevens, P., Wang, Y., Weinhardt, L., Holt, C. L., O'Connor, C., Feller, T., Xie, H., & Luelloff, S. (2015). mHealth text messaging for physical activity promotion in college students: A formative participatory approach. American Journal of Health Behavior, 39(3), 395–408. [CrossRef]
  • Yardley, L., Spring, B. J., Riper, H., Morrison, L. G., Crane, D. H., Curtis, K., ... & Blandford, A. (2016). Understanding and promoting effective engagement with digital behavior change interventions. American Journal of Preventive Medicine, 51(5), 833–842. [CrossRef]
  • Zeng, N., Liu, W., Pope, Z. C., McDonough, D. J., & Gao, Z. (2022). Acute effects of virtual reality exercise biking on college students' physical responses. Research Quarterly for Exercise and Sport, 93(3), 633–639. [CrossRef]
  • Zhang, J., & Jemmott, J. B., III. (2019). Mobile app-based small-group physical activity intervention for young African American women: A pilot randomized controlled trial. Prevention Science, 20, 863–872. [CrossRef]
  • Zhang, P., Fu, Y., Burns, R., & Godin, S. (2018). Effect of efitbuddy on promoting physical activity and motivation in college students. Journal of Human Sport and Exercise, 13(4), 799–809. [CrossRef]
  • Zhang, X., & Xu, X. (2020). Continuous use of fitness apps and shaping factors among college students: A mixed-method investigation. International Journal of Nursing Sciences, 7(Suppl 1), S80–S87. [CrossRef]
  • Zhu, Y., Long, Y., Wang, H., Lee, K. P., Zhang, L., & Wang, S. J. (2024). Digital behavior change intervention designs for habit formation: Systematic review. Journal of Medical Internet Research, 26, Article e54375. [CrossRef]
  • Zurita-Ortega, F., Chacón-Cuberos, R., Castro-Sánchez, M., Gutiérrez-Vela, F. L., & González-Valero, G. (2018). Effect of an intervention program based on active video games and motor games on health indicators in university students: A pilot study. International Journal of Environmental Research and Public Health, 15(7), Article 1329. [CrossRef]

Digital Technologies Developed for Enhancing Physical Activity Among Youth: A 20-Year Umbrella Review and Systematic Review

Year 2025, Volume: 10 Issue: 3, 429 - 455
https://doi.org/10.25307/jssr.1591617

Abstract

The impact of digital technologies on physical activity, sedentary behavior, energy expenditure, and weight loss has been a subject of long-standing investigation. While numerous studies have been conducted, their findings often lack the consistency needed to provide a comprehensive understanding. This has led to a surge in systematic reviews aimed at compiling primary studies to deliver more objective and holistic insights. An umbrella review covering 20 years of systematic reviews on the influence of digital technologies on increasing physical activity identified significant gaps. Notably, no systematic review focused exclusively on youth aged 14-29, and existing reviews exhibited considerable variability due to differences in target populations, technologies used, study designs, and inconsistent findings. Building on the umbrella review, the systematic review adhered to the same framework in terms of research questions, study protocol, data selection, inclusion and exclusion criteria, and methodology, with the key distinction being the population criteria. Specifically, while the umbrella review included studies encompassing a range of age groups, the systematic review focused exclusively on studies recruiting participants within the 14-29 age range. The umbrella review analyzed 22 high-quality systematic reviews encompassing a broad spectrum of digital interventions. Using the categories established by the umbrella review, the systematic review synthesized findings from 108 studies targeting youth exclusively. These findings revealed emerging insights into the potential of digital technologies for promoting physical activity. The analysis highlighted the need for robust, theory-driven interventions and longitudinal studies to establish sustainable behavioral changes in this age group.

Supporting Institution

Turkish National Agency- This study was produced from the Phytech Youth Project, which was accepted within the scope of the European Union Erasmus+ KA210 Cooperation Partnerships in the Field of Youth project.

Project Number

This study was produced from the Phytech Youth Project, which was accepted within the scope of the European Union Erasmus+ KA210 Cooperation Partnerships in the Field of Youth project.

References

  • REFERENCES Ahraz, A. O., Çar, B., & Cengiz, C. (2021). Fiziksel aktivitenin arttırılmasına yönelik dijital teknolojiler hakkında literatür taraması: 2010-2020. SPORMETRE Beden Eğitimi ve Spor Bilimleri Dergisi, 19(3), 218–232. [CrossRef]
  • Ali, H. I., Attlee, A., Alhebshi, S., Elmi, F., Al Dhaheri, A. S., Stojanovska, L., & Platat, C. (2021). Feasibility study of a newly developed technology-mediated lifestyle intervention for overweight and obese young adults. Nutrients, 13(8), Article 2547. [CrossRef]
  • Alinia, P., Cain, C., Fallahzadeh, R., Shahrokni, A., Cook, D., & Ghasemzadeh, H. (2017). How accurate is your activity tracker? A comparative study of step counts in low-intensity physical activities. JMIR mHealth and uHealth, 5(8), Article 106. [CrossRef]
  • Al-Nawaiseh, H. K., McIntosh, W. A., & McKyer, L. J. (2022). An m-health intervention using smartphone app to improve physical activity in college students: A randomized controlled trial. International Journal of Environmental Research and Public Health, 19(12), Article 7228. [CrossRef]
  • Alshahrani, A., Siddiqui, A., Khalil, S., Farag, S., Alshahrani, N., Alsabaani, A., & Korairi, H. (2021). WhatsApp-based intervention for promoting physical activity among female college students, Saudi Arabia: A randomized controlled trial. Eastern Mediterranean Health Journal, 27(8), 782-789. [CrossRef]
  • Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., & Jordan, Z. (Eds.). (2024). JBI Manual for Evidence Synthesis. JBI. [CrossRef]
  • Arumugam, A., Mohammad Zadeh, S. A., Zabin, Z. A., Hawarneh, T. M. E., Ahmed, H. I., Jauhari, F. S., Alkalih, H. Y., Shousha, T. M., Moustafa, I. M., & Häger, C. K. (2023). Sedentary and physical activity time differs between self-reported ATLS-2 physical activity questionnaire and accelerometer measurements in adolescents and young adults in the United Arab Emirates. BMC Public Health, 23(1), Article 1045. [CrossRef]
  • Ashton, L. M., Morgan, P. J., Hutchesson, M. J., Rollo, M. E., & Collins, C. E. (2017). Feasibility and preliminary efficacy of the 'HEYMAN' healthy lifestyle program for young men: A pilot randomized controlled trial. Nutrition Journal, 16(1), Article 2. [CrossRef]
  • Au, W. W., Recchia, F., Fong, D. Y., Wong, S. H. S., Chan, D. K. C., Capio, C. M., Yu, C. C. W., Wong, S. W. S., Sit, C. H. P., Ip, P., Chen, Y. J., Thompson, W. R., & Siu, P. M. (2024). Effect of wearable activity trackers on physical activity in children and adolescents: a systematic review and meta-analysis. The Lancet. Digital health, 6(9), e625–e639. [CrossRef]
  • Badau, D., & Badau, A. (2018). Identifying the incidence of exercise dependence attitudes, levels of body perception, and preferences for use of fitness technology monitoring. International Journal of Environmental Research and Public Health, 15(12), Article 2614. [CrossRef]
  • Bailey, A. P., Mougharbel, F., Goldfield, G. S., & Klentrou, P. (2020). Mental health benefits of physical activity interventions in children and adolescents: A systematic review and meta-analysis. Journal of Adolescent Health, 67(6), 798–806. [CrossRef]
  • Battista, R. A., & West, S. T. (2018). The use of geocaching as a form of physical activity in youth. American Journal of Health Education, 49(3), 125–132. [CrossRef]
  • Battista, R. A., West, S. T., Mackenzie, S. H., & Son, J. (2016). Is this exercise? No, it’s geocaching! Exploring factors related to aspects of geocaching participation. Journal of Park and Recreation Administration, 34(2), 125-132. [CrossRef]
  • Belbasis, L., Bellou, V., & Ioannidis, J. P. A. (2022). Conducting umbrella reviews. BMJ Medicine, 1(1), Article 000071. [CrossRef]
  • Benítez Andrades, J.A., Arias, N., García Ordás, M.T., Martínez Martínez, M., & García Rodríguez, I. (2024). Feasibility of social network based ehealth intervention on the improvement of healthy habits among children. Sensors, 20(5), Article 1404. [CrossRef]
  • Benzo, R. M., Singh, R., Presley, C. J., Tetrick, M. K., Chaplow, Z. L., Hery, C. M., ... & Fortune, E. (2025). Comparing the accuracy of different wearable activity monitors in patients with lung cancer and providing initial recommendations: Protocol for a pilot validation study. JMIR Research Protocols, 14(1), Article 70472. [CrossRef]
  • Bi, S., Yuan, J., Wang, Y., Zhang, W., Zhang, L., Zhang, Q., & Zhu, R. (2024). Effectiveness of digital health interventions in promoting physical activity among college students: Systematic review and meta-analysis. Journal of Medical Internet Research, 26, Article 51714 [CrossRef]
  • Biddle, S. J. H., & Mutrie, N. (2007). Psychology of physical activity: Determinants, well-being and interventions (2nd ed.). Routledge.
  • Bravata, D. M., Smith-Spangler, C., Sundaram, V., Gienger, A. L., Lin, N., Lewis, R., ... & Sirard, J. R. (2007). Using pedometers to increase physical activity and improve health: A systematic review. JAMA, 298(19), 2296–2304. [CrossRef]
  • Brickwood, K. J., Watson, G., O'Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), Article 11819. [CrossRef]
  • Burin, D., Liu, Y., Yamaya, N., & Kawashima, R. (2020). Virtual training leads to physical, cognitive, and neural benefits in healthy adults. NeuroImage, 222, Article 117297. [CrossRef]
  • Busch, L., Utesch, T., & Strauss, B. (2022). Normalised step targets in fitness apps affect users’ autonomy need satisfaction, motivation and physical activity—a six-week RCT. International Journal of Sport and Exercise Psychology, 20(1), 223–244. [CrossRef]
  • Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6), 625–626. [CrossRef]
  • CASP. (2018). CASP qualitative checklist. Critical appraisal skills programme. Oxford.
  • Cavallo, D. N., Tate, D. F., Ries, A. V., Brown, J. D., DeVellis, R. F., & Ammerman, A. S. (2012). A social media-based physical activity intervention: A randomized controlled trial. American Journal of Preventive Medicine, 43(5), 527–532. [CrossRef]
  • Cellini, N., McDevitt, E. A., Mednick, S. C., & Buman, M. P. (2016). Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiology & Behavior, 157, 79–86. [CrossRef]
  • Chiang, T. L., Chen, C., Hsu, C. H., Lin, Y. C., & Wu, H. J. (2019). Is the goal of 12,000 steps per day sufficient for improving body composition and metabolic syndrome? The necessity of combining exercise intensity: A randomized controlled trial. BMC Public Health, 19(1), Article 1215. [CrossRef]
  • Chung, A. E., Skinner, A. C., Hasty, S. E., & Perrin, E. M. (2017). Tweeting to health: A novel mHealth intervention using Fitbits and Twitter to foster healthy lifestyles. Clinical Pediatrics, 56(1), 26–32. [CrossRef]
  • Conroy, D. E., Wu, J., Lee, A. M., Brunke-Reese, D., & Lagoa, C. M. (2023). Dose-response relations between the frequency of two types of momentary feedback prompts and daily physical activity. Health Psychology, 42(3), 151–160. [CrossRef]
  • Cotie, P., Willms, A., & Liu, S. (2025). Implementation of behavior change theories and techniques for physical activity just-in-time adaptive interventions: A Scoping Review. IJERPH, 22(7), 1-24. [CrossRef]
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
  • Curtis, R. G., Ryan, J. C., Edney, S. M., & Maher, C. A. (2020). Can Instagram be used to deliver an evidence-based exercise program for young women? A process evaluation. BMC Public Health, 20, Article 1506. [CrossRef]
  • Daniels, K., Quadflieg, K., & Bonnechère, B. (2025). Mobile health interventions for active aging: a systematic review and meta-analysis on the effectiveness of physical activity promotion. mHealth, 11(4), 14-41. [CrossRef]
  • De Meester, F., De Bourdeaudhuij, I., Deforche, B., Ottevaere, C., & Cardon, G. (2011). Measuring physical activity using accelerometry in 13–15-year-old adolescents: The importance of including non-wear activities. Public Health Nutrition, 14(12), 2124–2133. [CrossRef]
  • Depper, A., & Howe, P. D. (2016). Are we fit yet? English adolescent girls’ experiences of health and fitness apps. Health Sociology Review, 26(1), 98–112. [CrossRef]
  • Dieu, O., Mikulovic, J., Fardy, P. S., Bui-Xuan, G., Béghin, L., & Vanhelst, J. (2017). Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 37(5), 525–529. [CrossRef]
  • Direito, A., Jiang, Y., Whittaker, R., & Maddison, R. (2015). Apps for improving fitness and increasing physical activity among young people: The AIMFIT pragmatic randomized controlled trial. Journal of Medical Internet Research, 17(8), Article 210. [CrossRef]
  • Domin, A., Uslu, A., Schulz, A., Ouzzahra, Y., & Vögele, C. (2022). A theory-informed, personalized mHealth intervention for adolescents (Mobile App for Physical Activity): Development and pilot study. JMIR Formative Research, 6(6), Article 35118. [CrossRef]
  • Durant, N. H., Joseph, R. P., Cherrington, A., Cuffee, Y., Knight, B., Lewis, D., Jr., & Allison, J. J. (2014). Recommendations for a culturally relevant Internet-based tool to promote physical activity among overweight young African American women, Alabama, 2010–2011. Preventing Chronic Disease, 11, Article 130169. [CrossRef]
  • Eaton, C., Vallejo, N., McDonald, X., Wu, J., Rodríguez, R., Muthusamy, N., ... & Riekert, K. A. (2024). User engagement with mHealth interventions to promote treatment adherence and self-management in people with chronic health conditions: systematic review. Journal of Medical Internet Research, 26, Article 50508. [CrossRef]
  • Eisenberg, M. H., Phillips, L. A., Fowler, L., & Moore, P. J. (2017). The impact of E-diaries and accelerometers on young adults' perceived and objectively assessed physical activity. Psychology of Sport and Exercise, 30, 55–63. [CrossRef]
  • Edney, S., Ryan, J. C., Olds, T., Monroe, C., Fraysse, F., Vandelanotte, C., ... & Maher, C. (2019). User engagement and attrition in an app-based physical activity intervention: Secondary analysis of a randomized controlled trial. Journal of medical Internet Research, 21(11), Article 14645. [CrossRef]
  • Erdoganoğlu, Y., & Arslan, B. C. (2019). The effect of smartphone usage on physical capacity in young people. Anadolu Psikiyatri Dergisi, 20(5), 499-505. [CrossRef]
  • Evans, E., Naugle, K., Ovispo, A., Kaleth, A., Arnold, B., & Naugle, K. (2021). Virtual reality and its effect on physical activity intensity in young healthy adults. Medicine & Science in Sports & Exercise, 53(8S), Article 776. [CrossRef]
  • Farič, N., Yorke, E., Varnes, L., Newby, K., Potts, H. W., Smith, L., Hon, A., Steptoe, A., & Fisher, A. (2019). Younger adolescents' perceptions of physical activity, exergaming, and virtual reality: Qualitative intervention development study. JMIR Serious Games, 7(2), Article 11960. [CrossRef]
  • Feodoroff, B., Konstantinidis, I., & Froböse, I. (2019). Effects of full body exergaming in virtual reality on cardiovascular and muscular parameters: Cross-sectional experiment. JMIR Serious Games, 7(3), Article 12324. [CrossRef]
  • França, C., Ashraf, S., Santos, F., Dionísio, M., Ihle, A., Marques, A., de Maio Nascimento, M., & Gouveia, É. R. (2024). Estimated energy expenditure in youth while playing active video games: A systematic review. Sports, 12(2), Article 39. [CrossRef]
  • Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., ... & Taylor, N. G. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR mHealth and uHealth, 8(9), Article 18694. [CrossRef]
  • Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., Hinder, S., ... & Shaw, S. (2017). Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. Journal of Medical Internet Research, 19(11), Article 8775. [CrossRef]
  • Grimaldi-Puyana, M., Fernández-Batanero, J. M., Fennell, C., & Sañudo, B. (2020). Associations of objectively-assessed smartphone use with physical activity, sedentary behavior, mood, and sleep quality in young adults: A cross-sectional study. International Journal of Environmental Research and Public Health, 17(10), Article 3499. [CrossRef]
  • Gowin, M., Cheney, M., Gwin, S., & Franklin Wann, T. (2015). Health and fitness app use in college students: a qualitative study. American Journal of Health Education, 46(4), 223-230. [CrossRef]
  • Hahn, S. L., Kramer-Kostecka, E. N., Hazzard, V. M., Barr-Anderson, D. J., Larson, N., & Neumark-Sztainer, D. (2023). Weight-related self-monitoring app use among emerging adults is cross-sectionally associated with amount and type of physical activity and screen time. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 60, 1-10. [CrossRef]
  • Han, H., Kim, H., Sun, W., Malaska, M., & Miller, B. (2020). Validation of wearable activity monitors for real-time cadence. Journal of Sports Sciences, 38(4), 383–389. [CrossRef]
  • Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane Handbook for Systematic Reviews of Interventions (Version 6.3). Cochrane.
  • Hojjatinia, S., Hojjatinia, S., Lagoa, C. M., Brunke-Reese, D., & Conroy, D. E. (2021). Person-specific dose-finding for a digital messaging intervention to promote physical activity. Health Psychology, 40(8), 502–512. [CrossRef]
  • Hojjatinia, S., Lee, A. M., Hojjatinia, S., Lagoa, C. M., Brunke-Reese, D., & Conroy, D. E. (2022). Physical activity dynamics during a digital messaging intervention changed after the pandemic declaration. Annals of Behavioral Medicine, 56(11), 1188–1198. [CrossRef]
  • Honary, M., Bell, B. T., Clinch, S., Wild, S. E., & McNaney, R. (2019). Understanding the role of healthy eating and fitness mobile apps in the formation of maladaptive eating and exercise behaviors in young people. JMIR mHealth and uHealth, 7(6), Article 14239. [CrossRef]
  • Höchsmann, C., Knaier, R., Infanger, D., & Schmidt-Trucksäss, A. (2020). Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiological Measurement, 41(1), Article 015001. [CrossRef]
  • Huberty, J., Green, J., Glissmann, C., Larkey, L., Puzia, M., & Lee, C. (2019). Efficacy of the mindfulness meditation mobile app "Calm" to reduce stress among college students: Randomized controlled trial. JMIR mHealth and uHealth, 7(6), Article 14273. [CrossRef]
  • Ibrahim, S. T., Patel, J., & Katapally, T. R. (2023). Digital citizen science for ethical surveillance of physical activity among youth: Mobile ecological momentary assessments vs. retrospective recall. arXiv 1, 1-24. [CrossRef]
  • Iwakura, M., Ozeki, C., Jung, S., Yamazaki, T., Miki, T., Nohara, M., & Nomura, K. (2025). An umbrella review of efficacy of digital health interventions for workers. NPJ Digital Medicine, 8(1), Article 207. [CrossRef]
  • Johnston, J. D., Massey, A. P., & Marker-Hoffman, R. L. (2012). Using an alternate reality game to increase physical activity and decrease obesity risk of college students. Journal of Diabetes Science and Technology, 6(4), 828–838. [CrossRef]
  • Jong, S. T., & Drummond, M. J. (2016). Hurry up and ‘like’me: Immediate feedback on social networking sites and the impact on adolescent girls. Asia-Pacific Journal of Health, Sport and Physical Education, 7(3), 251-267. [CrossRef]
  • Jung, C. K., Kim, J., & Rhim, H. C. (2023). Validation of an ear-worn wearable gait analysis device. Sensors, 23(3), Article 1244. [CrossRef]
  • Kardan, M., Jung, A., Iqbal, M., Keshtkar, S., Geidl, W., & Pfeifer, K. (2024). Efficacy of digital interventions on physical activity promotion in individuals with noncommunicable diseases: An overview of systematic reviews. BMC Digital Health, 2(1), Article 40. [CrossRef]
  • Klein, M. C., Manzoor, A., & Mollee, J. S. (2017). Active2Gether: A personalized m-health intervention to encourage physical activity. Sensors, 17(6), Article 1436. [CrossRef]
  • Kellner, M., Dold, C., & Lohkamp, M. (2023). Objectively assessing the effect of a messenger-based intervention to reduce sedentary behavior in university students: A pilot study. Journal of Prevention, 44(5), 521–534. [CrossRef]
  • Kendall, B., Bellovary, B., & Gothe, N. P. (2019). Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test. Journal of Sports Sciences, 37(1), 42–49. [CrossRef]
  • Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdés-Ramírez, G., Paixão, T. R., ... & Wang, J. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 74, 1061-1068. [CrossRef]
  • Kim, B. H., & Lee, H. (2022). Associations between smartphone use for physical activity by South Korean college students and behavioral change constructs of the transtheoretical model. Perceptual and Motor Skills, 129(4), 1270–1282. [CrossRef]
  • König, R., Seifert, A., & Doh, M. (2018). Internet use among older Europeans: An analysis based on SHARE data. Universal Access in the Information Society, 17(3), 621-633. [CrossRef]
  • Kurz, D., Irwin, B., Chalin, P., & Thompson, N. (2016). Testing the efficacy of OurSpace, a brief, group dynamics-based physical activity intervention: A randomized controlled trial. Journal of Medical Internet Research, 18(4), Article 87. [CrossRef]
  • Laranjo, L., Quiroz, J. C., Tong, H. L., Arevalo-Bazalar, M., & Coiera, E. (2020). A mobile social networking app for weight management and physical activity promotion: Results from an experimental mixed methods study. Journal of Medical Internet Research, 22(12), Article 19991. [CrossRef]
  • Le, S., Wang, X., Zhang, T., Lei, S. M., Cheng, S., Yao, W., & Schumann, M. (2022). Validity of three smartwatches in estimating energy expenditure during outdoor walking and running. Frontiers in Physiology, 13, Article 995575. [CrossRef]
  • Lewis, Z. H., Lyons, E. J., Jarvis, J. M., & Baillargeon, J. (2015). Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health, 15, Article 585. [CrossRef]
  • Liu, W., Zeng, N., Pope, Z. C., McDonough, D. J., & Gao, Z. (2019). Acute effects of immersive virtual reality exercise on young adults' situational motivation. Journal of Clinical Medicine, 8(11), Article 1947. [CrossRef]
  • Lupton, D. (2020). Australian women’s use of health and fitness apps and wearable devices: a feminist new materialism analysis. Feminist Media Studies, 20(7), 983-998. [CrossRef]
  • Ma, Z., Gao, Q., Tian, Y., Chen, Y., & Yuan, Q. (2023). Effectiveness of cooperative and competitive gamification in mobile fitness applications among occasional exercisers. Behaviour & Information Technology, 43(11), 2401–2423. [CrossRef]
  • Maden, Ç., Bayramlar, K., Arıcak, O. T., & Yagli, N. V. (2022). Effects of virtual reality-based training and aerobic training on gaming disorder, physical activity, physical fitness, and anxiety: A randomized, controlled trial. Mental Health and Physical Activity, 23, Article 100465. [CrossRef]
  • Marquet, O., Alberico, C., Adlakha, D., & Hipp, J. A. (2017). Examining motivations to play Pokémon GO and their influence on perceived outcomes and physical activity. JMIR Serious Games, 5(4), Article 21. [CrossRef]
  • McClure, C., & Schofield, D. (2020). Running virtual: The effect of virtual reality on exercise. Journal of Human Sport and Exercise, 15(4), 861–870. [CrossRef]
  • Melton, B., Bland, H., Carpentier, A., Gonzales, J., & Catenacci, K. (2018). Enhancing psychosocial constructs associated with technology-based physical activity: A randomized trial among African American women. American Journal of Health Education, 49(2), 74–85. [CrossRef]
  • Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6(1), Article 42. [CrossRef]
  • Middelweerd, A., Te Velde, S. J., Mollee, J. S., Klein, M. C., & Brug, J. (2018). App-based intervention combining evidence-based behavior change techniques with a model-based reasoning system to promote physical activity among young adults (Active2Gether): Descriptive study of the development and content. JMIR Research Protocols, 7(12), Article 7169. [CrossRef]
  • Middelweerd, A., Mollee, J., Klein, M. M., Manzoor, A., Brug, J., & Te Velde, S. J. (2020). The use and effects of an app-based physical activity intervention "Active2Gether" in young adults: Quasi-experimental trial. JMIR Formative Research, 4(1), Article 12538. [CrossRef]
  • Mizuta, R., Maeda, N., Tashiro, T., Suzuki, Y., Kuroda, S., Ishida, A., Oda, S., Watanabe, T., Tamura, Y., Komiya, M., & Urabe, Y. (2024). Effectiveness of Metaverse space-based exercise video distribution in young adults: Randomized controlled trial. JMIR mHealth and uHealth, 12, Article 46397. [CrossRef] Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. [CrossRef]
  • Mora-Gonzalez, J., Navarro-Mateos, C., & Pérez-López, I. J. (2022). “STAR WARS™: The First Jedi” gamification program: Improvement of fitness among college students. Journal of Teaching in Physical Education, 42(3), 502–510. [CrossRef]
  • Namli, S., Özdemir, K., Sen, I., & Bedir, D. (2025). Virtual reality-supported video modeling for enhancing motor skill acquisition in swimming. BMC Sports Science, Medicine and Rehabilitation, 17(1), 1-15. [CrossRef]
  • Napolitano, M. A., Lynch, S. B., Mavredes, M., Shambon, B., & Posey, L. (2020). Evaluating an interactive digital intervention for college weight gain prevention. Journal of Nutrition Education and Behavior, 52(9), 890–897. [CrossRef]
  • Nathan, D., Huynh, du Q., Rubenson, J., & Rosenberg, M. (2015). Estimating physical activity energy expenditure with the Kinect Sensor in an exergaming environment. PLOS ONE, 10(5), Article 0127113. [CrossRef]
  • Nuss, K. J., Thomson, E. A., Courtney, J. B., Comstock, A., Reinwald, S., Blake, S., E, R., Tracy, B. L., & Li, K. (2019). Assessment of accuracy of overall energy expenditure measurements for the fitbit charge HR 2 and Apple watch. American Journal of Health Behavior, 43(3), 498–505. [CrossRef]
  • Peng, W., Pfeiffer, K. A., Winn, B., Lin, J. H., & Suton, D. (2015). A pilot randomized, controlled trial of an active video game physical activity intervention. Health Psychology, 34(Suppl), 1229–1239. [CrossRef]
  • Perski, O., Blandford, A., West, R., & Michie, S. (2017). Conceptualising engagement with digital behaviour change interventions: A systematic review using principles from critical interpretive synthesis. Translational Behavioral Medicine, 7(2), 254–267. [CrossRef]
  • Polechoński, J., Zwierzchowska, A., Makioła, Ł., Groffik, D., & Kostorz, K. (2022). Handheld weights as an effective and comfortable way to increase exercise intensity of physical activity in virtual reality: Empirical study. JMIR Serious Games, 10(4), Article 39932. [CrossRef]
  • Pope, Z. C., Barr-Anderson, D. J., Lewis, B. A., Pereira, M. A., & Gao, Z. (2019). Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: A 12-week randomized pilot study. International Journal of Environmental Research and Public Health, 16(19), Article 3579. [CrossRef]
  • Pyky, R., Koivumaa-Honkanen, H., Leinonen, A. M., Ahola, R., Hirvonen, N., Enwald, H., ... & Korpelainen, R. (2017). Effect of tailored, gamified, mobile physical activity intervention on life satisfaction and self-rated health in young adolescent men: A population-based, randomized controlled trial (MOPO study). Computers in Human Behavior, 72, 13–22. [CrossRef]
  • Ráthonyi, G., Ráthonyi-Odor, K., Bendíková, E., & Bába, É. B. (2019). Wearable activity trackers usage among university students. European Journal of Contemporary Education, 8(3), 600–612. [CrossRef]
  • Reese, J. M., Joseph, R. P., Cherrington, A., Allison, J., Kim, Y. I., Spear, B., Childs, G., Simpson, T., & Durant, N. H. (2017). Development of participant-informed text messages to promote physical activity among African American women attending college: A qualitative mixed-methods inquiry. Journal of Transcultural Nursing, 28(3), 236–242. [CrossRef]
  • Roure, C., Pasco, D., Benoît, N., & Deldicque, L. (2020). Impact of a design-based bike exergame on young adults' physical activity metrics and situational interest. Research Quarterly for Exercise and Sport, 91(2), 309–315. [CrossRef]
  • Russell, E., Kirk, A., Dunlop, M. D., Hodgson, W., Patience, M., & Egan, K. (2025). Digital physical activity and sedentary behavior interventions for community-living adults: umbrella review. Journal of Medical Internet Research, 27, Article 66294. [CrossRef]
  • Saiz-Gonzalez, P., McDonough, D. J., Liu, W., & Gao, Z. (2023). Acute effects of virtual reality exercise on young adults’ blood pressure and feelings. International Journal of Mental Health Promotion, 25(5), 711–719. [CrossRef]
  • San Giovanni, C. B., Dawley, E., Pope, C., Steffen, M., & Roberts, J. (2021). The doctor will "friend" you now: A qualitative study on adolescents' preferences for weight management app features. Southern Medical Journal, 114(7), 373–379. [CrossRef]
  • Sattar, M. U., Palaniappan, S., Lokman, A., Hassan, A., Shah, N., & Riaz, Z. (2019). Effects of virtual reality training on medical students’ learning motivation and competency. Pakistan Journal of Medical Sciences, 35(3), 852-857. [CrossRef]
  • Schwarz, A., Winkens, L. H., de Vet, E., Ossendrijver, D., Bouwsema, K., & Simons, M. (2023). Design features associated with engagement in mobile health physical activity interventions among youth: systematic review of qualitative and quantitative studies. JMIR mHealth and uHealth, 11, Article 40898. [CrossRef]
  • Schweitzer, A. L., Ross, J. T., Klein, C. J., Lei, K. Y., & Mackey, E. R. (2016). An electronic wellness program to improve diet and exercise in college students: A pilot study. JMIR Research Protocols, 5(1), Article 29. [CrossRef]
  • Shea, B. J., Grimshaw, J. M., Wells, G. A., Boers, M., Andersson, N., Hamel, C., ... & Bouter, L. M. (2007). Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Medical Research Methodology, 7, Article 10. [CrossRef]
  • Simons, D., De Bourdeaudhuij, I., Clarys, P., De Cocker, K., Vandelanotte, C., & Deforche, B. (2018). Effect and process evaluation of a smartphone app to promote an active lifestyle in lower educated working young adults: Cluster randomized controlled trial. JMIR mHealth and uHealth, 6(8), Article e10003. [CrossRef]
  • Sousa, A. C., Ferrinho, S. N., & Travassos, B. (2023). The use of wearable technologies in the assessment of physical activity in preschool-and school-age youth: Systematic review. International Journal of Environmental Research and Public Health, 20(4), Article 3402. [CrossRef]
  • Stephens, J., Allen, J., & Dennison Himmelfarb, C. (2017a). “Smart” goals and physical activity intervention in African Americans: A randomized trial. PLOS ONE, 12(12), Article 0189011. [CrossRef]
  • Stephens, J. D., Yager, A. M., & Allen, J. (2017b). Smartphone technology and text messaging for weight loss in young adults: a randomized controlled trial. Journal of Cardiovascular Nursing, 32(1), 39-46. [CrossRef]
  • Stewart, M. T., Nezich, T., Lee, J. M., Hasson, R. E., & Colabianchi, N. (2021). Using a mobile phone app to analyze the relationship between planned and performed physical activity in university students: Observational study. JMIR mHealth and uHealth, 9(4), Article 17581. [CrossRef]
  • Stork, M. J., Bell, E. G., & Jung, M. E. (2021). Examining the impact of a mobile health app on functional movement and physical fitness: Pilot pragmatic randomized controlled trial. JMIR mHealth and uHealth, 9(5), Article 24076. [CrossRef]
  • Sun, X., Wang, Z., Fu, X., Zhao, C., Wang, F., & He, H. (2023). Validity of Apple Watch 6 and Polar A370 for monitoring energy expenditure while resting or performing light to vigorous physical activity. Journal of Science and Medicine in Sport, 26(9), 482–486. [CrossRef]
  • Szary, P., Kiper, P., Buchta, K., Bedrunka, D., Zabłotni, S., Rutkowska, A., ... & Rutkowski, S. (2020). Investigating exercise intensity in virtual reality among healthy volunteers. Human Movement, 21(4), 54–60. [CrossRef]
  • Tayler, W. B., LeCheminant, J. D., Price, J., & Tadje, C. P. (2022). The effect of wearable activity monitor presence on step counts. American Journal of Health Behavior, 46(4), 347–357. [CrossRef]
  • Thomson, E. A., Nuss, K., Comstock, A., Reinwald, S., Blake, S., Pimentel, R. E., Tracy, B. L., & Li, K. (2019). Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of Sports Sciences, 37(12), 1411–1419. [CrossRef]
  • Tobin, M. M., Jones, T. L., Ho, Y. S. H., & Short, C. E. (2023). Using photovoice to explore young women's experiences of behaviour change techniques in physical activity mobile apps. The International Journal of Behavioral Nutrition and Physical Activity, 20(1), Article 43. [CrossRef]
  • Tong, H. L., Quiroz, J. C., Kocaballi, A. B., Ijaz, K., Coiera, E., Chow, C. K., & Laranjo, L. (2022). A personalized mobile app for physical activity: An experimental mixed-methods study. Digital Health, 8, 1-13. [CrossRef]
  • Tong, A., Sainsbury, P., & Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19(6), 349–357. [CrossRef]
  • Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. [CrossRef]
  • Turner, T., & Hingle, M. (2017). Evaluation of a mindfulness-based mobile app aimed at promoting awareness of weight-related behaviors in adolescents: A pilot study. JMIR Research Protocols, 6(4), Article e67. [CrossRef]
  • Ulas, K., & Semin, I. (2021). The biological and motivational effects of aerobic exercise with virtual reality. Research Quarterly for Exercise and Sport, 92(3), 321–326. [CrossRef]
  • Walsh, J. C., Corbett, T., Hogan, M., Duggan, J., & McNamara, A. (2016). An mHealth intervention using a smartphone app to increase walking behavior in young adults: A pilot study. JMIR mHealth and uHealth, 4(3), Article 109. [CrossRef]
  • Wang, Q., Egelandsdal, B., Amdam, G. V., Almli, V. L., & Oostindjer, M. (2016). Diet and physical activity apps: Perceived effectiveness by app users. JMIR mHealth and uHealth, 4(2), Article 33. [CrossRef]
  • West, D. S., Monroe, C. M., Turner-McGrievy, G., Sundstrom, B., Larsen, C., Magradey, K., Wilcox, S., & Brandt, H. M. (2016). A technology-mediated behavioral weight gain prevention intervention for college students: Controlled, quasi-experimental study. Journal of Medical Internet Research, 18(6), Article 133. [CrossRef]
  • Widawska-Stanisz, A. (2020). Use of modern technologies as a tool to support measures promoting physical activity–differences according to the gender of respondents. Journal of Physical Education and Sport, 20(5), 3002–3009. [CrossRef]
  • Winand, M., Ng, A., & Byers, T. (2020). Pokémon “Go” but for how long?: A qualitative analysis of motivation to play and sustainability of physical activity behavior in young adults using mobile augmented reality. Managing Sport and Leisure, 27(5), 421–438. [CrossRef]
  • WHO. (World Health Organization) (2022). Global status report on physical activity 2022: Country profiles. World Health Organization.
  • Yan, A. F., Stevens, P., Wang, Y., Weinhardt, L., Holt, C. L., O'Connor, C., Feller, T., Xie, H., & Luelloff, S. (2015). mHealth text messaging for physical activity promotion in college students: A formative participatory approach. American Journal of Health Behavior, 39(3), 395–408. [CrossRef]
  • Yardley, L., Spring, B. J., Riper, H., Morrison, L. G., Crane, D. H., Curtis, K., ... & Blandford, A. (2016). Understanding and promoting effective engagement with digital behavior change interventions. American Journal of Preventive Medicine, 51(5), 833–842. [CrossRef]
  • Zeng, N., Liu, W., Pope, Z. C., McDonough, D. J., & Gao, Z. (2022). Acute effects of virtual reality exercise biking on college students' physical responses. Research Quarterly for Exercise and Sport, 93(3), 633–639. [CrossRef]
  • Zhang, J., & Jemmott, J. B., III. (2019). Mobile app-based small-group physical activity intervention for young African American women: A pilot randomized controlled trial. Prevention Science, 20, 863–872. [CrossRef]
  • Zhang, P., Fu, Y., Burns, R., & Godin, S. (2018). Effect of efitbuddy on promoting physical activity and motivation in college students. Journal of Human Sport and Exercise, 13(4), 799–809. [CrossRef]
  • Zhang, X., & Xu, X. (2020). Continuous use of fitness apps and shaping factors among college students: A mixed-method investigation. International Journal of Nursing Sciences, 7(Suppl 1), S80–S87. [CrossRef]
  • Zhu, Y., Long, Y., Wang, H., Lee, K. P., Zhang, L., & Wang, S. J. (2024). Digital behavior change intervention designs for habit formation: Systematic review. Journal of Medical Internet Research, 26, Article e54375. [CrossRef]
  • Zurita-Ortega, F., Chacón-Cuberos, R., Castro-Sánchez, M., Gutiérrez-Vela, F. L., & González-Valero, G. (2018). Effect of an intervention program based on active video games and motor games on health indicators in university students: A pilot study. International Journal of Environmental Research and Public Health, 15(7), Article 1329. [CrossRef]
There are 136 citations in total.

Details

Primary Language English
Subjects Sports Science and Exercise (Other)
Journal Section Original Article
Authors

Ahmet Özsoy 0000-0002-5429-4732

Nuh Osman Yıldız 0000-0002-0122-4335

Bekir Çar 0000-0001-7422-9543

Elia Andrea Salamone 0009-0009-9674-2095

Federico Mazzara 0009-0006-1452-160X

Mert Gürer 0009-0006-5841-2376

Bora Agbulut 0009-0002-6600-1439

Emin Kerem Erkadam 0009-0007-3136-4930

Zafer Karakus 0009-0009-3786-4543

Aziz Onurhan Ahraz 0000-0002-5911-3451

Zülbiye Kaçay 0000-0002-9794-0888

Project Number This study was produced from the Phytech Youth Project, which was accepted within the scope of the European Union Erasmus+ KA210 Cooperation Partnerships in the Field of Youth project.
Early Pub Date October 19, 2025
Publication Date October 23, 2025
Submission Date December 9, 2024
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Özsoy, A., Yıldız, N. O., Çar, B., … Salamone, E. A. (2025). Digital Technologies Developed for Enhancing Physical Activity Among Youth: A 20-Year Umbrella Review and Systematic Review. Journal of Sport Sciences Research, 10(3), 429-455. https://doi.org/10.25307/jssr.1591617

26355     18836     18837         8748

Journal Download Statistics