Research Article
BibTex RIS Cite

The Allocation of Sample Size into Strata in Stratified Random Sampling under Non-Linear Cost Constraints

Year 2010, Volume: 7 Issue: 1, 1 - 17, 15.07.2010

Abstract

In this study, optimum allocation of n sized sample, which is selected from a population by Stratified Random Sampling under fixed budget, is examined. While doing this allocation, two different non-linear cost functions are used. Besides the situations, in which the variance of sample mean statistics is minimum under two different non-linear cost constraints are examined. The allocation of sample size into strata is harder and more time consuming when non-linear cost constraints rather than linear cost constraints are used. In this study, by taking into consideration of the situations in which neither objective function nor cost constraints are linear, the allocation of n sized sample that is selected from a population and its effect on the variance of sample mean statistics are examined by a simulation study.

References

  • Bal, H., 1995. Optimizasyon teknikleri. Gazi Üniversitesi, Ankara.
  • Bosh, V., Wildner, R., 2003. Optimum allocation of stratified random samples designed for multiple mean estimates and multiple observed variables. Communications in Statistics, Vol. 32, No. 10, 1897-1909.
  • Bretthauer, K. M., Ross, A., Shetty, B., 1999. Non-linear integer programming for optimal allocation in stratified sampling. European Journal of Operational Research, 116, 667-680.
  • Bretthauer, K. M., Shetty, B., 1995. The non-linear resource allocation problem. Operations Research, Vol. 43, No. 4, 670-683
  • Chernyak, A., 2001. Optimal allocation in stratified and double random sampling with a non-linear cost function. Journal of Mathematical Sciences, Vol. 103, No. 4, 525-528.
  • Clark, R. G., Steel, D. G., 2000. Optimum allocation of sample to strata and stages with simple additional constraints. The Statistician, 49, Part 2, 197-207.
  • Cochran, W.G., 1977. Sampling techniques 3rd Ed.. John Wiley and Sons Inc., New York.
  • Diaz-Garcia, J. A., 2006. Optimum allocation in multivariate stratified sampling: Multiobjective programming. I-06-07(PE), 1-22.
  • Diaz-Garcia, J. A., Garay-Tapia M. M., 2005. Optimum allocation in stratified surveys. I-05-14(PE), 1-16.
  • Hamdy, A. T., 1982. Yöneylem araştırması 6. Basım. Baray, Ş. A. ve Esnaf, Ş., Literatür Yayıncılık, İstanbul.
  • Hansen, M. H., Hurwitz, W. N., Madow, W. G., 1953. Sample survey methods and theory. Wiley, New York.
  • Judez, L., Chaya, C., Miguel, J. M., Bru, R., 2006. Stratification and sample size of data sources for agricultural mathematical programming models. Mathematical and Computer Modelling, Vol. 43, 530-535.
  • Khan, M. G. M., Ahsan, M. J., 2003. A note on optimum allocation in multivariate stratified sampling. S. Pac. J. Nat. Sci., Vol. 21, 91-95.
  • Khan, M. G. M., Khan, E. A., Ahsan, M. J., 2003. An optimal multivariate stratified sampling design using dynamic programming. Australian&New Zeland Journal of Statistics, 45(1), 107-113.
  • Rao, S. S., 1991. Optimization: Theory and applications. Wiley Eastern, New Delhi.
  • Semiz, M., 2004. Determination of compromise integer strata sample sizes using goal programming. Hacettepe Journal of Mathematics and Statistics, Vol. 33, 91-96
  • Vallian R., Gentle, J. E., 1997. An application of mathematical programming to sample allocation. Computational Statistics & Data Analysis, Vol. 25, 337-360.
  • Yamane, T., 1967. Elementary sampling theory. Prentice Hall, USA.

Tabakalı Tesadüfi Örneklemede Doğrusal Olmayan Maliyet Kısıtları Altında Örnek Hacminin Tabakalara Dağıtılması

Year 2010, Volume: 7 Issue: 1, 1 - 17, 15.07.2010

Abstract

Bu çalışmada, Tabakalı Tesadüfi Örneklemede kitleden seçilen n hacimli örneğin, sabit bir bütçe altında tabakalara optimum şekilde dağıtılması incelenmiştir. Bu dağıtım yapılırken iki farklı doğrusal olmayan maliyet fonksiyonu kullanılmıştır. Ayrıca ele alınan iki farklı doğrusal olmayan maliyet kısıtı altında hangi durumlarda örnek ortalaması istatistiğinin varyansının minimum olduğu incelenmiştir. Doğrusal olmayan maliyet kısıtları kullanıldığında örnek hacminin tabakalara dağıtılması, doğrusal maliyet kısıtı kullanıldığındaki duruma göre daha zor ve zaman alıcıdır. Bu çalışmada, hem amaç fonksiyonunun, hem de maliyet kısıtlarının doğrusal olmadığı durum dikkate alınarak, kitleden seçilen n hacimli örneğin tabakalara nasıl dağıtıldığı ve örnek ortalaması istatistiğinin varyansını nasıl etkilediği simülasyon çalışması ile incelenmiştir.

References

  • Bal, H., 1995. Optimizasyon teknikleri. Gazi Üniversitesi, Ankara.
  • Bosh, V., Wildner, R., 2003. Optimum allocation of stratified random samples designed for multiple mean estimates and multiple observed variables. Communications in Statistics, Vol. 32, No. 10, 1897-1909.
  • Bretthauer, K. M., Ross, A., Shetty, B., 1999. Non-linear integer programming for optimal allocation in stratified sampling. European Journal of Operational Research, 116, 667-680.
  • Bretthauer, K. M., Shetty, B., 1995. The non-linear resource allocation problem. Operations Research, Vol. 43, No. 4, 670-683
  • Chernyak, A., 2001. Optimal allocation in stratified and double random sampling with a non-linear cost function. Journal of Mathematical Sciences, Vol. 103, No. 4, 525-528.
  • Clark, R. G., Steel, D. G., 2000. Optimum allocation of sample to strata and stages with simple additional constraints. The Statistician, 49, Part 2, 197-207.
  • Cochran, W.G., 1977. Sampling techniques 3rd Ed.. John Wiley and Sons Inc., New York.
  • Diaz-Garcia, J. A., 2006. Optimum allocation in multivariate stratified sampling: Multiobjective programming. I-06-07(PE), 1-22.
  • Diaz-Garcia, J. A., Garay-Tapia M. M., 2005. Optimum allocation in stratified surveys. I-05-14(PE), 1-16.
  • Hamdy, A. T., 1982. Yöneylem araştırması 6. Basım. Baray, Ş. A. ve Esnaf, Ş., Literatür Yayıncılık, İstanbul.
  • Hansen, M. H., Hurwitz, W. N., Madow, W. G., 1953. Sample survey methods and theory. Wiley, New York.
  • Judez, L., Chaya, C., Miguel, J. M., Bru, R., 2006. Stratification and sample size of data sources for agricultural mathematical programming models. Mathematical and Computer Modelling, Vol. 43, 530-535.
  • Khan, M. G. M., Ahsan, M. J., 2003. A note on optimum allocation in multivariate stratified sampling. S. Pac. J. Nat. Sci., Vol. 21, 91-95.
  • Khan, M. G. M., Khan, E. A., Ahsan, M. J., 2003. An optimal multivariate stratified sampling design using dynamic programming. Australian&New Zeland Journal of Statistics, 45(1), 107-113.
  • Rao, S. S., 1991. Optimization: Theory and applications. Wiley Eastern, New Delhi.
  • Semiz, M., 2004. Determination of compromise integer strata sample sizes using goal programming. Hacettepe Journal of Mathematics and Statistics, Vol. 33, 91-96
  • Vallian R., Gentle, J. E., 1997. An application of mathematical programming to sample allocation. Computational Statistics & Data Analysis, Vol. 25, 337-360.
  • Yamane, T., 1967. Elementary sampling theory. Prentice Hall, USA.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Statistics
Journal Section Research Articles
Authors

S. Tuğba Şahin This is me

Publication Date July 15, 2010
Published in Issue Year 2010 Volume: 7 Issue: 1

Cite

APA Şahin, S. T. (2010). Tabakalı Tesadüfi Örneklemede Doğrusal Olmayan Maliyet Kısıtları Altında Örnek Hacminin Tabakalara Dağıtılması. İstatistik Araştırma Dergisi, 7(1), 1-17.