Research Article
BibTex RIS Cite

Magic Squares and Latin Squares

Year 2013, Volume: 10 Issue: 1, 17 - 28, 15.07.2013

Abstract

In this paper, magic squares which have been known for 4000 years are presented. Especially, Moore-Penrose inverse and eigenvalue properties of 2n x 2n (n≥2) singular magic squares are investigated. Furthermore, Latin square design models are illustrated visually by special stamps.

References

  • Akdeniz, F., 2011. Sihirli karelerin gizeminden Nye Gezinti İstatistik Dergisi, Yıl:1, Sayı: 3, 12-17.
  • Ataöv, T., 2002. Hintli Bir Matematik Dahisi. Cumhuriyet Bilim Teknik, Sayı: 773.
  • Booth, A. D., Booth, K. H. V. 1955. On Magic Squares. The Mathematical Gazette, 39, 132-133.
  • Henrich, C. J., 1991. Magic squares and linear algebra. Amer. Math. Monthly 98, 481-488.
  • Ka Lok Chu, Puntanen, S., Styan, G. P. H., 2009. Some comments on philatelic Latin squares from Pakistan, Pak. J. Statist. 25(4), 427-471.
  • Ka Lok Chu, Drury, S. W., Styan, G. P. H., Trenkler, G., 2011. Magic Moore- Penrose inverses and philatelic magic squares with special emphasis on the Daniels-Zlobec magic square, Croatian Operational Research Review 2, 4-13.
  • Loly, P. D., Styan, G. P. H., 2010. Comments on 5x5 Philatelic Latin SquaresCHANCE Vol.23(2), 1-10.
  • Pasles, P. C., 2001. The lost squares of Dr. Franklin: Ben Franklin’s missing squares and the secret of the magic circle. The American Mathematical Monthly, 108, 489-511.
  • Rao, C. R., Mitra, S. K., 1971. Generalized Inverse of Matrices and its Applications, New York: John Wiley.
  • Schmidt, K. and Trenkler, G., 2001. The Moore-Penrose inverse of a semi- magic square is semi-magic. International Journal of Mathematical Education in Science and Technology, 32, 624-629.
  • Styan, G. H. P. Boyer, C., Ka Lok C., 2009. Some comments on Latin squares and on Graeco- Latin squares, illustrated with postage stamps and old playing cards. Stat. Papers 50: 917-941.
  • Trenkler, G., 1994. Singular magic squres. International Journal of Mathematical Education in Science and Technology, 25, 595-597.
  • William L. S., 1978. Mathematics and Science: An Adventure in Postage Stamps National Council of Teachers of Mathematics, Reston, Virginia, 2.

Sihirli Kareler ve Latin Kareler

Year 2013, Volume: 10 Issue: 1, 17 - 28, 15.07.2013

Abstract

Bu makalede 4000 yıldır bilinen sihirli kareler ele alınmıştır. Özellikle singular matrisler veren 2nx2n (n≥2) boyutlu sihirli matrislerin Moore-Penrose inversi ve özdeğerlerinin özellikleri incelenmiştir. Ayrıca, Latin kare tasarım modelleri pullar yardımıyla görsel olarak verilmiştir.

References

  • Akdeniz, F., 2011. Sihirli karelerin gizeminden Nye Gezinti İstatistik Dergisi, Yıl:1, Sayı: 3, 12-17.
  • Ataöv, T., 2002. Hintli Bir Matematik Dahisi. Cumhuriyet Bilim Teknik, Sayı: 773.
  • Booth, A. D., Booth, K. H. V. 1955. On Magic Squares. The Mathematical Gazette, 39, 132-133.
  • Henrich, C. J., 1991. Magic squares and linear algebra. Amer. Math. Monthly 98, 481-488.
  • Ka Lok Chu, Puntanen, S., Styan, G. P. H., 2009. Some comments on philatelic Latin squares from Pakistan, Pak. J. Statist. 25(4), 427-471.
  • Ka Lok Chu, Drury, S. W., Styan, G. P. H., Trenkler, G., 2011. Magic Moore- Penrose inverses and philatelic magic squares with special emphasis on the Daniels-Zlobec magic square, Croatian Operational Research Review 2, 4-13.
  • Loly, P. D., Styan, G. P. H., 2010. Comments on 5x5 Philatelic Latin SquaresCHANCE Vol.23(2), 1-10.
  • Pasles, P. C., 2001. The lost squares of Dr. Franklin: Ben Franklin’s missing squares and the secret of the magic circle. The American Mathematical Monthly, 108, 489-511.
  • Rao, C. R., Mitra, S. K., 1971. Generalized Inverse of Matrices and its Applications, New York: John Wiley.
  • Schmidt, K. and Trenkler, G., 2001. The Moore-Penrose inverse of a semi- magic square is semi-magic. International Journal of Mathematical Education in Science and Technology, 32, 624-629.
  • Styan, G. H. P. Boyer, C., Ka Lok C., 2009. Some comments on Latin squares and on Graeco- Latin squares, illustrated with postage stamps and old playing cards. Stat. Papers 50: 917-941.
  • Trenkler, G., 1994. Singular magic squres. International Journal of Mathematical Education in Science and Technology, 25, 595-597.
  • William L. S., 1978. Mathematics and Science: An Adventure in Postage Stamps National Council of Teachers of Mathematics, Reston, Virginia, 2.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Statistics (Other)
Journal Section Research Articles
Authors

Fikri Akdeniz

Publication Date July 15, 2013
Published in Issue Year 2013 Volume: 10 Issue: 1

Cite

APA Akdeniz, F. (2013). Sihirli Kareler ve Latin Kareler. İstatistik Araştırma Dergisi, 10(1), 17-28.