Research Article
BibTex RIS Cite

Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması

Year 2022, , 42 - 49, 21.12.2022
https://doi.org/10.53525/jster.1141878

Abstract

Bu çalışmada, tek tekerlekten tahrikli bir güneş enerjili aracın bağımsız arka süspansiyon sisteminde kullanılan arka salıncak kolunun tasarım iyileştirmesi, topoloji optimizasyonu yöntemi yardımıyla gerçekleştirilmektedir. Öncelikle güneş enerjili aracın sürüş koşullarına göre yarı statik standart yük durumları incelenmiş ve arka süspansiyon sisteminin sonlu elemanlar metoduyla statik analizi yapılmıştır. Arka salıncak kolundaki kritik gerilme bölgeleri göz önünde bulundurularak bir kaba model, geometrik sınırları aynı kalmak şartıyla oluşturulmuştur. Bu model için çok adımlı topoloji optimizasyonu uygulanmıştır. Elde edilen son tasarımı doğrulamak için aynı sınır şartlarında sonlu elemanlar analizi yapılmıştır. Bu çalışmanın ana amacı, arka salıncak kolunun gerilme konsantrasyonunu düşürerek geliştirilmiş bir model sağlamaktır.

References

  • Pervaiz, M., Panthapulakkal, S., Sain, M., & Tjong, J. (2016). Emerging trends in automotive lightweighting through novel composite materials. Materials sciences and Applications, 7(01), 26.
  • Lutsey, N. (2010). Review of technical literature and trends related to automobile mass-reduction technology.
  • Minak, G., Fragassa, C., & de Camargo, F. V. (2017, April). A brief review on determinant aspects in energy efficient solar car design and manufacturing. In International Conference on Sustainable Design and Manufacturing (pp. 847-856). Springer, Cham.
  • Paterson, S., Vijayaratnam, P., Perera, C., & Doig, G. (2016). Design and development of the Sunswift eVe solar vehicle: a record-breaking electric car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(14), 1972-1986.
  • Gören, A. (2017). Solar energy harvesting in electro mobility. In Energy Harvesting and Energy Efficiency (pp. 293-326). Springer, Cham.
  • Camargo F.V., Fragassa C., Pavlovic A., and Martignani M., (2017) Analysis of the Suspension Design Evolution in Solar Cars (pp. 394-404) FME Transactions. doi:10.5937/fmet1703394V
  • Bendsøe, M. P., & Sigmund, O. (2003). Topology Optimization - Theory, Methods, and Applications. Springer Verlag.
  • Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.
  • Power, A., & O'Camb, A. (2016). Solar Car Suspension System. California Polytechnic State University, USA.
  • Halonen A. (2021) Electric Vehicle Material Selection for Chassis and Suspension Components, Light Metal Age. (pp.16-20) June 2021.
  • Ramos J. D. da C. (2016). Front and Rear Swing Arm Design of an Electric Racing Motorcycle, Técnico Lisboa M.Sc. Thesis. November 2016.
  • Rheinfelden, Primary Aluminium Casting Alloys, Datasheet L 2.06/3-KH.
  • Ansys. (2021). Ansys GRANTA EduPack software.
  • Milliken, W. F., & Milliken, D. L. (1995). Race car vehicle dynamics (Vol. 400, p. 16). Warrendale, PA: Society of Automotive Engineers.
  • Gillespie, T. D. (1992). Fundamentals of vehicle dynamics (Vol. 114). SAE Technical Paper.
  • Heißing B, Ersoy M, Gies S. (2011). Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven. Wiesbaden, Germany: Vieweg & Teubner.
  • Mathijsen, D. (2016). Redefining the motor car. Reinforced Plastics, 60(3), 154-159.

Topology Optimization Study for Rear Swing Arm of a Lightweight Solar-Powered Vehicle

Year 2022, , 42 - 49, 21.12.2022
https://doi.org/10.53525/jster.1141878

Abstract

In this study, the design improvement of the rear swing arm used in the independent rear suspension system of a single-wheel drive solar-powered vehicle was carried out by topology optimization. First of all, the quasi-static standard load conditions for the driving conditions of the solar-powered vehicle were examined, and the static analysis of the rear suspension system was performed using the finite element method. Considering the critical stress regions in the rear swing arm, a rough model was created with the same geometrical boundaries. Multi-step topology optimization is applied to this model. Finite element analysis was performed under the same boundary conditions to validate the optimized design. The main purpose of this study is to provide an improved model by reducing the stress concentration of the rear swing arm.

References

  • Pervaiz, M., Panthapulakkal, S., Sain, M., & Tjong, J. (2016). Emerging trends in automotive lightweighting through novel composite materials. Materials sciences and Applications, 7(01), 26.
  • Lutsey, N. (2010). Review of technical literature and trends related to automobile mass-reduction technology.
  • Minak, G., Fragassa, C., & de Camargo, F. V. (2017, April). A brief review on determinant aspects in energy efficient solar car design and manufacturing. In International Conference on Sustainable Design and Manufacturing (pp. 847-856). Springer, Cham.
  • Paterson, S., Vijayaratnam, P., Perera, C., & Doig, G. (2016). Design and development of the Sunswift eVe solar vehicle: a record-breaking electric car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(14), 1972-1986.
  • Gören, A. (2017). Solar energy harvesting in electro mobility. In Energy Harvesting and Energy Efficiency (pp. 293-326). Springer, Cham.
  • Camargo F.V., Fragassa C., Pavlovic A., and Martignani M., (2017) Analysis of the Suspension Design Evolution in Solar Cars (pp. 394-404) FME Transactions. doi:10.5937/fmet1703394V
  • Bendsøe, M. P., & Sigmund, O. (2003). Topology Optimization - Theory, Methods, and Applications. Springer Verlag.
  • Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.
  • Power, A., & O'Camb, A. (2016). Solar Car Suspension System. California Polytechnic State University, USA.
  • Halonen A. (2021) Electric Vehicle Material Selection for Chassis and Suspension Components, Light Metal Age. (pp.16-20) June 2021.
  • Ramos J. D. da C. (2016). Front and Rear Swing Arm Design of an Electric Racing Motorcycle, Técnico Lisboa M.Sc. Thesis. November 2016.
  • Rheinfelden, Primary Aluminium Casting Alloys, Datasheet L 2.06/3-KH.
  • Ansys. (2021). Ansys GRANTA EduPack software.
  • Milliken, W. F., & Milliken, D. L. (1995). Race car vehicle dynamics (Vol. 400, p. 16). Warrendale, PA: Society of Automotive Engineers.
  • Gillespie, T. D. (1992). Fundamentals of vehicle dynamics (Vol. 114). SAE Technical Paper.
  • Heißing B, Ersoy M, Gies S. (2011). Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven. Wiesbaden, Germany: Vieweg & Teubner.
  • Mathijsen, D. (2016). Redefining the motor car. Reinforced Plastics, 60(3), 154-159.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Mechanical Engineering, Material Production Technologies
Journal Section Research Articles
Authors

Mert Kip 0000-0002-7301-5428

Aytac Goren 0000-0002-7954-1816

Publication Date December 21, 2022
Submission Date July 7, 2022
Acceptance Date August 10, 2022
Published in Issue Year 2022

Cite

APA Kip, M., & Goren, A. (2022). Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research, 3(2), 42-49. https://doi.org/10.53525/jster.1141878
AMA Kip M, Goren A. Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research. December 2022;3(2):42-49. doi:10.53525/jster.1141878
Chicago Kip, Mert, and Aytac Goren. “Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması”. Journal of Science, Technology and Engineering Research 3, no. 2 (December 2022): 42-49. https://doi.org/10.53525/jster.1141878.
EndNote Kip M, Goren A (December 1, 2022) Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research 3 2 42–49.
IEEE M. Kip and A. Goren, “Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması”, Journal of Science, Technology and Engineering Research, vol. 3, no. 2, pp. 42–49, 2022, doi: 10.53525/jster.1141878.
ISNAD Kip, Mert - Goren, Aytac. “Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması”. Journal of Science, Technology and Engineering Research 3/2 (December 2022), 42-49. https://doi.org/10.53525/jster.1141878.
JAMA Kip M, Goren A. Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research. 2022;3:42–49.
MLA Kip, Mert and Aytac Goren. “Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması”. Journal of Science, Technology and Engineering Research, vol. 3, no. 2, 2022, pp. 42-49, doi:10.53525/jster.1141878.
Vancouver Kip M, Goren A. Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research. 2022;3(2):42-9.
Dergide yayınlanan çalışmalar
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) Uluslararası Lisansı ile lisanslanmıştır.
by-nc-nd.png

Free counters!