Research Article
BibTex RIS Cite

Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu

Year 2022, , 50 - 59, 21.12.2022
https://doi.org/10.53525/jster.1174394

Abstract

Bu çalışmada, AA2024 alüminyum alaşımı malzemelerin lazer kaynağı sırasında uygulanan farklı kaynak parametrelerinin çekme mukavemeti üzerindeki etkileri araştırılmış ve en uygun kaynak parametrelerini elde etmek için Taguchi ve ANOVA yöntemleri kullanılarak optimizasyonları yapılmıştır. Değişken kaynak parametreleri olarak lazer gücü, darbe süresi, ışın güç yoğunluğu ve darbe enerjisi kullanılmıştır. Sonuçlar, en düşük çekme dayanımının, 1800 W lazer gücünde, 5 ms darbe süresinde, 6000 W/mm2 ışın güç yoğunluğunda ve 9,5 Joule darbe enerjisi kullanılarak elde edildiğini, en yüksek çekme dayanımının ise 2600 W lazer gücünde, 6 ms darbe süresinde, 6500 W/mm2 ışın güç yoğunluğunda ve 9,5 Joule darbe enerjisi kullanılarak elde edildiğini göstermiştir. En yüksek çekme dayanımı (174 MPa) ile en düşük çekme dayanımı (113 MPa) sonuçları karşılaştırıldığında, en yüksek çekme dayanımının en düşük çekme dayanımından %53,98 daha yüksek olduğu bulunmuştur. S/N oranlarına göre, 2600 W lazer gücü, 6 ms darbe süresi, 7000 W/mm2 ışın güç yoğunluğu ve 10,5 Joule darbe enerjisinin AA2024 alüminyum alaşımının lazer kaynağı ile kaynak edilmesi için en optimum kaynak parametreleri olduğu anlaşılmıştır. ANOVA analizine göre ortalama çekme dayanımı üzerinde en etkili parametrenin lazer gücü (%82,45) olduğu belirlenmiştir.

References

  • [1] K. Gültekin, and Y. Korkmaz, “AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi,” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 4, pp. 1269-1281, 2021.
  • [2] J. Ahn, L. Chen, E. He, C. Davies, and J. Dear, “Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3,” Journal of Manufacturing Processes, vol. 25, pp. 26-36, 2017.
  • [3] J. Ahn, E. He, L. Chen, J. Dear, and C. Davies, “The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3,” Journal of Manufacturing Processes, vol. 29, pp. 62-73, 2017.
  • [4] J. Enz, M. Kumar, S. Riekehr, V. Ventzke, N. Huber, and N. Kashaev, “Mechanical properties of laser beam welded similar and dissimilar aluminum alloys,” Journal of Manufacturing Processes, vol. 29, pp. 272-280, 2017.
  • [5] J. Ahn, L. Chen, C. Davies, and J. Dear, "Digital image correlation for determination of local constitutive properties of fibre laser welding joints in AA2024-T3." pp. 1-2.
  • [6] V. Alfieria, F. Caiazzoa, and V. Sergi, “Autogenous laser welding of AA 2024 aluminium alloy: process issues and bead features,” Procedia Cirp, vol. 33, pp. 406-411, 2015.
  • [7] L. Chen, E. He, J. Ahn, and J. Dear, “Parametric optimization and joint heterogeneity characterization of fiber laser welding of AA2024-T3,” Proceedings of the 67th Annual Assembly of the International Institute of Welding. International Institute of Welding, Seoul, KR, pp. 1-9, 2014.
  • [8] F. Caiazzo, V. Alfieri, F. Cardaropoli, and V. Sergi, “Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb: YAG disk laser,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 9, pp. 2157-2169, 2013.
  • [9] J. Ahn, E. He, L. Chen, R. Wimpory, S. Kabra, J. Dear, and C. Davies, “FEM prediction of welding residual stresses in fibre laser-welded AA 2024-T3 and comparison with experimental measurement,” The International Journal of Advanced Manufacturing Technology, vol. 95, no. 9, pp. 4243-4263, 2018.
  • [10] M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Applied Surface Science, vol. 326, pp. 181-186, 2015.
  • [11] S. Katayama, Y. Kawahito, and M. Mizutani, “Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects,” Physics procedia, vol. 5, pp. 9-17, 2010.
  • [12] N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO 2 laser welding: effect of shielding gas on porosity formation,” Journal of laser applications, vol. 12, no. 6, pp. 245-250, 2000.
  • [13] S. Katayama, “Laser welding of aluminium alloys and dissimilar metals,” Welding international, vol. 18, no. 8, pp. 618-625, 2004.
  • [14] A. Matsunawa, S. Katayama, and K. Kojima, “CO2 laser weldability of aluminium alloys (Report 1): Effect of welding conditions on melting characteristics,” Welding international, vol. 12, no. 7, pp. 519-528, 1998.
  • [15] D. Wallerstein, A. Salminen, F. Lusquiños, R. Comesaña, J. d. V. García, A. R. Rodríguez, A. Badaoui, and J. Pou, “Recent developments in laser welding of aluminum alloys to steel,” Metals, vol. 11, no. 4, pp. 622, 2021.
  • [16] J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” The International Journal of Advanced Manufacturing Technology, vol. 94, no. 5, pp. 1825-1847, 2018.
  • [17] H. Park, and S. Rhee, “Estimation of weld bead size in CO 2 laser welding by using multiple regression and neural network,” Journal of Laser Applications, vol. 11, no. 3, pp. 143-150, 1999.
  • [18] M. Özcan, and Ş. Karamanlı, “Sac malzemelerin lazer kaynak parametreleri,” Selçuk-Teknik Dergisi, vol. 3, no. 1, pp. 14-25, 2004.
  • [19] G. Taguchi, System of experimental design, quality resources, 1987.
  • [20] A. İpekçi, M. Kam, and K. Argun, “Surface Roughness Performance of Cu Electrode on Hardened AISI 4140 Steels in EDM Process,” Journal of Chinese Society of Mechanical Engineers, vol. 43, no. 4, pp. 355-362, 2022.
  • [21] D. C. Montgomery, Design and analysis of experiments, Ninth ed.: John wiley & sons, 2017.
  • [22] M. Kam, A. İpekçi, and K. Argun, “Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 5, pp. 1927-1935, 2022.
  • [23] M. Ş. Adin, B. İşcan, and Ş. Baday, “Optimization of welding parameters of AISI 431 and AISI 1020 joints joined by friction welding using taguchi method,” Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 453-470, 2022.
  • [24] H. Adin, A. Doğan, and M. Ş. Adin, “Şehir İçi Doğalgaz Borularındaki Kaynak Hatalarının Tahribatsız ve Tahribatlı Muayene Yöntemleri ile İncelenmesi,” Journal of Scientific, Technology and Engineering Research, vol. 2, no. 1, pp. 46-57, 2021.
  • [25] M. Ş. Adin, and B. İşcan, “Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method,” European Mechanical Science, vol. 6, no. 1, pp. 17-26, 2022.
  • [26] M. Ş. Adin, and M. Okumuş, “Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 Steels,” Arabian Journal for Science and Engineering, vol. 47, pp. 8341-8350, 2022.
  • [27] R. Unal, and E. B. Dean, “Taguchi approach to design optimization for quality and cost: an overview,” International Society of Parametric Analysts, pp. 1-10, 1990.
  • [28] K. Krishnaiah, and P. Shahabudeen, “Applied design of experiments and Taguchi methods,” PHI Learning Pvt. Ltd., pp. 1-371, 2012.
  • [29] V. K. Tiwary, A. Padmakumar, and V. Malik, “Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 16, pp. 8991-9002, 2022.
  • [30] V. K. Tiwary, A. Padmakumar, and V. R. Malik, “Investigations on FSW of nylon micro-particle enhanced 3D printed parts applied to a Clark-Y UAV wing,” Welding International, vol. 36, no. 8, pp. 474-488, 2022.

Investigation of Mechanical Properties of Aluminum Alloys Welded by Laser Welding and Optimization of Welding Parameters Using Taguchi and ANOVA Methods

Year 2022, , 50 - 59, 21.12.2022
https://doi.org/10.53525/jster.1174394

Abstract

In this study, the effects of different welding parameters applied during laser welding of AA2024 aluminum alloy materials on the tensile strength were investigated and their optimizations were made using Taguchi and ANOVA methods to obtain the most suitable welding parameters. The variable welding parameters such as laser power, pulse duration, beam power density and pulse energy were used in the study. As a result, it was concluded that the lowest tensile strength was obtained when 1800 W laser power, 5 ms pulse duration, 6000 W/mm2 beam power density and 9.5 Joule pulse energy were used, while the highest tensile strength was obtained using 2600 W laser power, 6 ms pulse duration, 6500 W/mm2 beam power density and 9.5 Joule pulse energy. When the results of the highest tensile strength (174 MPa) and the lowest tensile strength (113 MPa) were compared, it was found that the highest tensile strength was 53.98%, which was higher than the lowest tensile strength.

References

  • [1] K. Gültekin, and Y. Korkmaz, “AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi,” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 4, pp. 1269-1281, 2021.
  • [2] J. Ahn, L. Chen, E. He, C. Davies, and J. Dear, “Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3,” Journal of Manufacturing Processes, vol. 25, pp. 26-36, 2017.
  • [3] J. Ahn, E. He, L. Chen, J. Dear, and C. Davies, “The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3,” Journal of Manufacturing Processes, vol. 29, pp. 62-73, 2017.
  • [4] J. Enz, M. Kumar, S. Riekehr, V. Ventzke, N. Huber, and N. Kashaev, “Mechanical properties of laser beam welded similar and dissimilar aluminum alloys,” Journal of Manufacturing Processes, vol. 29, pp. 272-280, 2017.
  • [5] J. Ahn, L. Chen, C. Davies, and J. Dear, "Digital image correlation for determination of local constitutive properties of fibre laser welding joints in AA2024-T3." pp. 1-2.
  • [6] V. Alfieria, F. Caiazzoa, and V. Sergi, “Autogenous laser welding of AA 2024 aluminium alloy: process issues and bead features,” Procedia Cirp, vol. 33, pp. 406-411, 2015.
  • [7] L. Chen, E. He, J. Ahn, and J. Dear, “Parametric optimization and joint heterogeneity characterization of fiber laser welding of AA2024-T3,” Proceedings of the 67th Annual Assembly of the International Institute of Welding. International Institute of Welding, Seoul, KR, pp. 1-9, 2014.
  • [8] F. Caiazzo, V. Alfieri, F. Cardaropoli, and V. Sergi, “Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb: YAG disk laser,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 9, pp. 2157-2169, 2013.
  • [9] J. Ahn, E. He, L. Chen, R. Wimpory, S. Kabra, J. Dear, and C. Davies, “FEM prediction of welding residual stresses in fibre laser-welded AA 2024-T3 and comparison with experimental measurement,” The International Journal of Advanced Manufacturing Technology, vol. 95, no. 9, pp. 4243-4263, 2018.
  • [10] M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Applied Surface Science, vol. 326, pp. 181-186, 2015.
  • [11] S. Katayama, Y. Kawahito, and M. Mizutani, “Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects,” Physics procedia, vol. 5, pp. 9-17, 2010.
  • [12] N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO 2 laser welding: effect of shielding gas on porosity formation,” Journal of laser applications, vol. 12, no. 6, pp. 245-250, 2000.
  • [13] S. Katayama, “Laser welding of aluminium alloys and dissimilar metals,” Welding international, vol. 18, no. 8, pp. 618-625, 2004.
  • [14] A. Matsunawa, S. Katayama, and K. Kojima, “CO2 laser weldability of aluminium alloys (Report 1): Effect of welding conditions on melting characteristics,” Welding international, vol. 12, no. 7, pp. 519-528, 1998.
  • [15] D. Wallerstein, A. Salminen, F. Lusquiños, R. Comesaña, J. d. V. García, A. R. Rodríguez, A. Badaoui, and J. Pou, “Recent developments in laser welding of aluminum alloys to steel,” Metals, vol. 11, no. 4, pp. 622, 2021.
  • [16] J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” The International Journal of Advanced Manufacturing Technology, vol. 94, no. 5, pp. 1825-1847, 2018.
  • [17] H. Park, and S. Rhee, “Estimation of weld bead size in CO 2 laser welding by using multiple regression and neural network,” Journal of Laser Applications, vol. 11, no. 3, pp. 143-150, 1999.
  • [18] M. Özcan, and Ş. Karamanlı, “Sac malzemelerin lazer kaynak parametreleri,” Selçuk-Teknik Dergisi, vol. 3, no. 1, pp. 14-25, 2004.
  • [19] G. Taguchi, System of experimental design, quality resources, 1987.
  • [20] A. İpekçi, M. Kam, and K. Argun, “Surface Roughness Performance of Cu Electrode on Hardened AISI 4140 Steels in EDM Process,” Journal of Chinese Society of Mechanical Engineers, vol. 43, no. 4, pp. 355-362, 2022.
  • [21] D. C. Montgomery, Design and analysis of experiments, Ninth ed.: John wiley & sons, 2017.
  • [22] M. Kam, A. İpekçi, and K. Argun, “Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 5, pp. 1927-1935, 2022.
  • [23] M. Ş. Adin, B. İşcan, and Ş. Baday, “Optimization of welding parameters of AISI 431 and AISI 1020 joints joined by friction welding using taguchi method,” Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 453-470, 2022.
  • [24] H. Adin, A. Doğan, and M. Ş. Adin, “Şehir İçi Doğalgaz Borularındaki Kaynak Hatalarının Tahribatsız ve Tahribatlı Muayene Yöntemleri ile İncelenmesi,” Journal of Scientific, Technology and Engineering Research, vol. 2, no. 1, pp. 46-57, 2021.
  • [25] M. Ş. Adin, and B. İşcan, “Optimization of process parameters of medium carbon steel joints joined by MIG welding using Taguchi method,” European Mechanical Science, vol. 6, no. 1, pp. 17-26, 2022.
  • [26] M. Ş. Adin, and M. Okumuş, “Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 Steels,” Arabian Journal for Science and Engineering, vol. 47, pp. 8341-8350, 2022.
  • [27] R. Unal, and E. B. Dean, “Taguchi approach to design optimization for quality and cost: an overview,” International Society of Parametric Analysts, pp. 1-10, 1990.
  • [28] K. Krishnaiah, and P. Shahabudeen, “Applied design of experiments and Taguchi methods,” PHI Learning Pvt. Ltd., pp. 1-371, 2012.
  • [29] V. K. Tiwary, A. Padmakumar, and V. Malik, “Adhesive bonding of similar/dissimilar three-dimensional printed parts (ABS/PLA) considering joint design, surface treatments, and adhesive types,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 16, pp. 8991-9002, 2022.
  • [30] V. K. Tiwary, A. Padmakumar, and V. R. Malik, “Investigations on FSW of nylon micro-particle enhanced 3D printed parts applied to a Clark-Y UAV wing,” Welding International, vol. 36, no. 8, pp. 474-488, 2022.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mehmet Şükrü Adin 0000-0002-2307-9669

Publication Date December 21, 2022
Submission Date September 13, 2022
Acceptance Date September 29, 2022
Published in Issue Year 2022

Cite

APA Adin, M. Ş. (2022). Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu. Journal of Science, Technology and Engineering Research, 3(2), 50-59. https://doi.org/10.53525/jster.1174394
AMA Adin MŞ. Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu. Journal of Science, Technology and Engineering Research. December 2022;3(2):50-59. doi:10.53525/jster.1174394
Chicago Adin, Mehmet Şükrü. “Lazer Kaynağı Ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması Ve Kaynak Parametrelerinin Taguchi Ve ANOVA Yöntemleri Kullanılarak Optimizasyonu”. Journal of Science, Technology and Engineering Research 3, no. 2 (December 2022): 50-59. https://doi.org/10.53525/jster.1174394.
EndNote Adin MŞ (December 1, 2022) Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu. Journal of Science, Technology and Engineering Research 3 2 50–59.
IEEE M. Ş. Adin, “Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu”, Journal of Science, Technology and Engineering Research, vol. 3, no. 2, pp. 50–59, 2022, doi: 10.53525/jster.1174394.
ISNAD Adin, Mehmet Şükrü. “Lazer Kaynağı Ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması Ve Kaynak Parametrelerinin Taguchi Ve ANOVA Yöntemleri Kullanılarak Optimizasyonu”. Journal of Science, Technology and Engineering Research 3/2 (December 2022), 50-59. https://doi.org/10.53525/jster.1174394.
JAMA Adin MŞ. Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu. Journal of Science, Technology and Engineering Research. 2022;3:50–59.
MLA Adin, Mehmet Şükrü. “Lazer Kaynağı Ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması Ve Kaynak Parametrelerinin Taguchi Ve ANOVA Yöntemleri Kullanılarak Optimizasyonu”. Journal of Science, Technology and Engineering Research, vol. 3, no. 2, 2022, pp. 50-59, doi:10.53525/jster.1174394.
Vancouver Adin MŞ. Lazer Kaynağı ile Kaynak Yapılan Alüminyum Alaşımlarının Mekanik Özelliklerinin Araştırılması ve Kaynak Parametrelerinin Taguchi ve ANOVA Yöntemleri Kullanılarak Optimizasyonu. Journal of Science, Technology and Engineering Research. 2022;3(2):50-9.
Dergide yayınlanan çalışmalar
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) Uluslararası Lisansı ile lisanslanmıştır.
by-nc-nd.png

Free counters!