Research Article
BibTex RIS Cite

Finite Element Analysis of Micro Beam in a MEMS-Based Microfluidic Channel

Year 2020, Volume: 1 Issue: 2, 40 - 44, 21.12.2020
https://doi.org/10.5281/zenodo.4289264

Abstract

It is well known that the physical properties of a micro beam are largely dependent on the fluid and micro channels in which the beam is immersed. In this study, the finite element analysis of the micro beam within the microfluidic channel based on MEMS (Micro-Electro-Mechanical Systems) is aimed to be made in detail. These analyzes include von Mises stress, pressure quantities, velocities, and displacements during movement. Using the Euler-Bernoulli equation for the beam, a micro-beam fixed in a fluid is modeled and analyzed. Unstable Stokes equations are solved using a Helmholtz decomposition technique in a two-dimensional plane containing micro-beam sections. The finite element method using the Comsol Multiphysics software results is compared with the current validation method, and an acceptable match is obtained between them. Pressure, velocity, and displacement analyzes were created by ensuring all boundary conditions. The current formulation has been shown to be a suitable and novel approach to solve the problem with good accuracy. As a result, a theoretical model is provided that can be used in the design and interpretation of density, viscosity, and microfluidic sensors.

References

  • [1] Butz, B., Dolle, C., Halbig, C. E., Spiecker, E., Eigler, S., “Highly Intact and Pure Oxo Functionalized Graphene: Synthesis and Electron Beam Induced Reduction”, Angewandte Chemie International Edition, vol. 55, no. 51, 15771-15774, 2016.
  • [2] Ülkir, O., Ertugrul, İ., “Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması”, Avrupa Bilim ve Teknoloji Dergisi, vol. 18, 136-141, 2020.
  • [3] Vahdat, A. S., Rezazadeh, G. “Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators”, Journal of the Franklin Institute, vol. 348, no. 4, 622-639, 2011.
  • [4] Turek, S., Hron, J., “Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow”, In Fluid-structure interaction. Springer, Berlin, Heidelberg, 371-385, 2006.
  • [5] Esmailza.deh, M., Lakis, A.A., Thomas, M., Marcouiller,. L., “Three-dimensional modeling of curved structures containing and/or submerged in Fluid”, Finite Elem. Anal. Des. Vol. 44, 334–345, 2008.
  • [6] Liang, C.C., Liao, C.C., Tai, Y.S., Lai, W.H., “The free vibration analysis of submerged cantilever plates”, Ocean Eng. Vol. 28, no. 9, 1225–1245, 2001.
  • [7] Lindholm, U.S., Kana, D.D., Chu, W.H., Abramson, H.N., “Elastic vibration characteristics of cantilever plates in water”, J. Ship Res. Vol. 9, 11–12, 1965.
  • [8] Ergin, A., Ugurlu, B.: Linear vibration analysis of cantilever plates partially submerged in fluid. J. Fluids Struct. 17(7), 927–939 (2003)
  • [9] Gorman, D.G., Trendafilova, I., Mulholland, A.J., Horacek, J., “Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction”, J. Sound Vib. Vol. 308, 231–245, 2007.
  • [10] Ertugrul, I., Ulkir, O., “Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic”, RSC Advances, vol. 10, no. 56, 33731-33738, 2020.
  • [11] Atkinson, C., Manrique de Lara, M., “The frequency response of a rectangular cantilever plate vibrating in a viscous fluid”, J. Sound Vib. vol. 300, 352–367, 2007.
  • [12] Jeong, K.-H., “Hydroelastic vibration of two annular plates coupled with abounded compressible fluid”, J. Fluids Struct, vol. 22, no. 8, 1079–1096, 2006.
  • [13] Rezazadeh, G., Fathalilou, M., Shabani, R., Tarverdilo, S., Talebian, S., “Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading”, Microsyst. Technol., vol. 15, 1355–1363, 2009.
  • [14] Harrison, C., Tavernier, E., Vancauwenberghe, O., Donzier, E., Hsu, K., Goodwin, A.R.H., Marty, F., Mercier, B., “On the response of a resonating plate in a liquid near a solid wall”, Sens. Actuators A vol. 134, 414–426, 2007.

MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi

Year 2020, Volume: 1 Issue: 2, 40 - 44, 21.12.2020
https://doi.org/10.5281/zenodo.4289264

Abstract

Bir mikro kirişin fiziksel özelliklerinin, kirişin içerisine daldırıldığı sıvıya ve mikro kanallara büyük ölçüde bağlı olduğu iyi bilinmektedir. Bu çalışmada, MEMS (Mikro Elektro-Mekanik Sistemler) tabanlı mikroakışkan kanal içerisindeki mikro kirişin sonlu elemanlar analizleri ayrıntılı bir şekilde yapılması amaçlanmıştır. Bu analizler von Mises gerilimi, basınç miktarları, hareket sırasında oluşan hızlar ve yer değiştirmeleri kapsamaktadır. Kiriş için Euler-Bernoulli denklemi kullanılarak akışkan içinde sabit bir mikro kiriş modellenerek analizi yapılmıştır. Kararsız Stokes denklemleri, mikro kiriş kesitlerini içeren iki boyutlu bir düzlemde bir Helmholtz ayrıştırma tekniği kullanılarak çözülmektedir. Comsol Multiphysics yazılım sonuçlarını kullanan sonlu elemanlar yöntemi, doğrulama için mevcut yöntemle karşılaştırılmış ve aralarında kabul edilebilir bir eşleşme elde edilmiştir. Basınç, hız ve yer değiştirme analizleri tüm sınır koşulları sağlanarak oluşturulmuştur. Mevcut formülasyonun, sorunu iyi bir doğrulukla çözmek için uygun ve yeni bir yaklaşım olduğu gösterilmiştir. Sonuç olarak çalışmada, yoğunluk, viskozite ve mikroakışkan sensörlerinin tasarımında ve yorumlanmasında kullanılabilecek teorik bir model sağlanmıştır.

References

  • [1] Butz, B., Dolle, C., Halbig, C. E., Spiecker, E., Eigler, S., “Highly Intact and Pure Oxo Functionalized Graphene: Synthesis and Electron Beam Induced Reduction”, Angewandte Chemie International Edition, vol. 55, no. 51, 15771-15774, 2016.
  • [2] Ülkir, O., Ertugrul, İ., “Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması”, Avrupa Bilim ve Teknoloji Dergisi, vol. 18, 136-141, 2020.
  • [3] Vahdat, A. S., Rezazadeh, G. “Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators”, Journal of the Franklin Institute, vol. 348, no. 4, 622-639, 2011.
  • [4] Turek, S., Hron, J., “Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow”, In Fluid-structure interaction. Springer, Berlin, Heidelberg, 371-385, 2006.
  • [5] Esmailza.deh, M., Lakis, A.A., Thomas, M., Marcouiller,. L., “Three-dimensional modeling of curved structures containing and/or submerged in Fluid”, Finite Elem. Anal. Des. Vol. 44, 334–345, 2008.
  • [6] Liang, C.C., Liao, C.C., Tai, Y.S., Lai, W.H., “The free vibration analysis of submerged cantilever plates”, Ocean Eng. Vol. 28, no. 9, 1225–1245, 2001.
  • [7] Lindholm, U.S., Kana, D.D., Chu, W.H., Abramson, H.N., “Elastic vibration characteristics of cantilever plates in water”, J. Ship Res. Vol. 9, 11–12, 1965.
  • [8] Ergin, A., Ugurlu, B.: Linear vibration analysis of cantilever plates partially submerged in fluid. J. Fluids Struct. 17(7), 927–939 (2003)
  • [9] Gorman, D.G., Trendafilova, I., Mulholland, A.J., Horacek, J., “Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction”, J. Sound Vib. Vol. 308, 231–245, 2007.
  • [10] Ertugrul, I., Ulkir, O., “Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic”, RSC Advances, vol. 10, no. 56, 33731-33738, 2020.
  • [11] Atkinson, C., Manrique de Lara, M., “The frequency response of a rectangular cantilever plate vibrating in a viscous fluid”, J. Sound Vib. vol. 300, 352–367, 2007.
  • [12] Jeong, K.-H., “Hydroelastic vibration of two annular plates coupled with abounded compressible fluid”, J. Fluids Struct, vol. 22, no. 8, 1079–1096, 2006.
  • [13] Rezazadeh, G., Fathalilou, M., Shabani, R., Tarverdilo, S., Talebian, S., “Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading”, Microsyst. Technol., vol. 15, 1355–1363, 2009.
  • [14] Harrison, C., Tavernier, E., Vancauwenberghe, O., Donzier, E., Hsu, K., Goodwin, A.R.H., Marty, F., Mercier, B., “On the response of a resonating plate in a liquid near a solid wall”, Sens. Actuators A vol. 134, 414–426, 2007.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

İshak Ertugrul 0000-0001-9586-0377

Publication Date December 21, 2020
Submission Date November 17, 2020
Acceptance Date November 27, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Ertugrul, İ. (2020). MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi. Journal of Science, Technology and Engineering Research, 1(2), 40-44. https://doi.org/10.5281/zenodo.4289264
AMA Ertugrul İ. MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi. JSTER. December 2020;1(2):40-44. doi:10.5281/zenodo.4289264
Chicago Ertugrul, İshak. “MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi”. Journal of Science, Technology and Engineering Research 1, no. 2 (December 2020): 40-44. https://doi.org/10.5281/zenodo.4289264.
EndNote Ertugrul İ (December 1, 2020) MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi. Journal of Science, Technology and Engineering Research 1 2 40–44.
IEEE İ. Ertugrul, “MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi”, JSTER, vol. 1, no. 2, pp. 40–44, 2020, doi: 10.5281/zenodo.4289264.
ISNAD Ertugrul, İshak. “MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi”. Journal of Science, Technology and Engineering Research 1/2 (December 2020), 40-44. https://doi.org/10.5281/zenodo.4289264.
JAMA Ertugrul İ. MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi. JSTER. 2020;1:40–44.
MLA Ertugrul, İshak. “MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi”. Journal of Science, Technology and Engineering Research, vol. 1, no. 2, 2020, pp. 40-44, doi:10.5281/zenodo.4289264.
Vancouver Ertugrul İ. MEMS Tabanlı Bir Mikroakışkan Kanaldaki Mikro Kirişin Sonlu Elemanlar Analizi. JSTER. 2020;1(2):40-4.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!