Research Article
BibTex RIS Cite

Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control

Year 2023, Volume: 4 Issue: 1, 44 - 51, 21.06.2023
https://doi.org/10.53525/jster.1231984

Abstract

Perovskite solar cells have gained significant attention due to their excellent photovoltaic
performance and simple manufacturing process. However, the use of lead (Pb) in the widely
studied CH3NH3PbI3 perovskite material limits its large-scale production due to low
stability in the air. As a result, researchers have turned to lead-free CH 3 NH 3 SnI 3 perovskite
as a promising alternative. In this study, we used one-dimensional simulation software to
investigate the photovoltaic properties of CH 3 NH 3 SnI 3 perovskite solar cells with a
TiO 2 /CH 3 NH 3 SnI 3 /Cu 2 O structure. By adjusting the thickness of the absorbing layer, doping
concentration, and density of defects, we were able to improve the performance of the solar
cells. The obtained results of Jsc= 31,519 mA/cm 2 , Voc = 0,965V, FF = 78,717%, and PCE
= 23,943% demonstrate the potential of lead-free CH 3 NH 3 SnI 3 as a highly efficient and
environmentally friendly solar absorber.

References

  • [1] Lee, K., Kim, H., & Park, N. G. (2012). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 338(6107), 643-647.
  • [2] Tan, Z., Zhao, N., & Wu, J. (2016). Efficient and stable perovskite solar cells: a review. Renewable and Sustainable Energy Reviews, 57, 1119-1129.
  • [3] Mitzi, D. B., Park, N. G., & Osgood, R. M. (2014). High-efficiency hybrid photovoltaic perovskites. Nature Materials, 13(9), 873-880.
  • [4] Ye, L., Li, Y., & Chen, L. (2017). Tin-based hybrid perovskites for photovoltaic applications. Advanced Energy Materials, 7(7), 1603441.
  • [5] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w.
  • [6] P.Sun, Q.Li, and L.Yang, “Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+,” Nanoscale, p. 10, 2015, doi: 10.1039/C5NR05337D.
  • [7] M. Burgelman, “SCAPS manual,” 2020.
  • [8] L. Yang, A. T. Barrows, and D. G. Lidzey, “Device simulation of lead-free CH 3 NH 3 SnI 3 perovskite solar cells with high efficiency,” vol. 25, p. 10, 2016, doi: 10.1088/1674-1056/25/10/108802.
  • [9] Y. M. Lee, I. Maeng, J. Park, M. Song, and J. Yun, “Comprehensive Understanding and Controlling the Defect Structures : An Effective Approach for Organic-Inorganic Hybrid Application,” vol. 6, no. November, pp. 1–9, 2018, doi: 10.3389/fenrg.2018.00128.
  • [10] Ozkaya, U., & Seyfi, L. (2016). Modeling and Analysis of Absorbing Boundary Condition in Antenna Design. In CBU International Conference Proceedings (Vol. 4, pp. 832-839).
  • [11] M. Burgelman, “SCAPS manual,” 2020.
  • [12] C.Asma, “Optimisation et simulation numérique du profilde la couche absorbante et des différentes couches.”
  • [13] C.Meriem, “Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells,” pp. 0–30, 2017.
  • [14] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w

Kalınlık, Doping ve Hata Yoğunluğu Kontrolü Yoluyla Kurşunsuz CH3NH3SnI3 Perovskite Güneş Pillerinin Performansını Optimize Etme

Year 2023, Volume: 4 Issue: 1, 44 - 51, 21.06.2023
https://doi.org/10.53525/jster.1231984

Abstract

Perovskite güneş pilleri, mükemmel fotovoltaik performansları ve basit üretim süreçleri nedeniyle büyük ilgi gördü. Bununla birlikte, yaygın olarak çalışılan CH3NH3PbI3 perovskite malzemesinde kurşun (Pb) kullanımı, havadaki düşük stabilite nedeniyle büyük ölçekli üretimini sınırlar. Sonuç olarak, araştırmacılar ümit verici bir alternatif olarak kurşunsuz CH3NH3SnI3 perovskite yöneldiler. Bu çalışmada, TiO2/CH3NH3SnI3/Cu2O yapısına sahip CH3NH3SnI3 perovskite güneş pillerinin fotovoltaik özelliklerini araştırmak için tek boyutlu simülasyon yazılımı kullandık. Emici tabakanın kalınlığını, doping konsantrasyonunu ve kusurların yoğunluğunu ayarlayarak güneş pillerinin performansını iyileştirmeyi başardık. Elde edilen Jsc= 31,519 mA/cm2, Voc = 0,965V, FF = %78,717 ve PCE = %23,943 sonuçları, kurşunsuz CH3NH3SnI3'ün yüksek verimli ve çevre dostu bir güneş soğurucu potansiyelini göstermektedir.

References

  • [1] Lee, K., Kim, H., & Park, N. G. (2012). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 338(6107), 643-647.
  • [2] Tan, Z., Zhao, N., & Wu, J. (2016). Efficient and stable perovskite solar cells: a review. Renewable and Sustainable Energy Reviews, 57, 1119-1129.
  • [3] Mitzi, D. B., Park, N. G., & Osgood, R. M. (2014). High-efficiency hybrid photovoltaic perovskites. Nature Materials, 13(9), 873-880.
  • [4] Ye, L., Li, Y., & Chen, L. (2017). Tin-based hybrid perovskites for photovoltaic applications. Advanced Energy Materials, 7(7), 1603441.
  • [5] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w.
  • [6] P.Sun, Q.Li, and L.Yang, “Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+,” Nanoscale, p. 10, 2015, doi: 10.1039/C5NR05337D.
  • [7] M. Burgelman, “SCAPS manual,” 2020.
  • [8] L. Yang, A. T. Barrows, and D. G. Lidzey, “Device simulation of lead-free CH 3 NH 3 SnI 3 perovskite solar cells with high efficiency,” vol. 25, p. 10, 2016, doi: 10.1088/1674-1056/25/10/108802.
  • [9] Y. M. Lee, I. Maeng, J. Park, M. Song, and J. Yun, “Comprehensive Understanding and Controlling the Defect Structures : An Effective Approach for Organic-Inorganic Hybrid Application,” vol. 6, no. November, pp. 1–9, 2018, doi: 10.3389/fenrg.2018.00128.
  • [10] Ozkaya, U., & Seyfi, L. (2016). Modeling and Analysis of Absorbing Boundary Condition in Antenna Design. In CBU International Conference Proceedings (Vol. 4, pp. 832-839).
  • [11] M. Burgelman, “SCAPS manual,” 2020.
  • [12] C.Asma, “Optimisation et simulation numérique du profilde la couche absorbante et des différentes couches.”
  • [13] C.Meriem, “Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells,” pp. 0–30, 2017.
  • [14] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w
There are 14 citations in total.

Details

Primary Language English
Subjects Biomaterial , Material Production Technologies
Journal Section Research Articles
Authors

Leila Ghalmı 0000-0001-5238-5609

Publication Date June 21, 2023
Submission Date January 10, 2023
Acceptance Date March 20, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Ghalmı, L. (2023). Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control. Journal of Science, Technology and Engineering Research, 4(1), 44-51. https://doi.org/10.53525/jster.1231984
AMA Ghalmı L. Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control. Journal of Science, Technology and Engineering Research. June 2023;4(1):44-51. doi:10.53525/jster.1231984
Chicago Ghalmı, Leila. “Optimizing the Performance of Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control”. Journal of Science, Technology and Engineering Research 4, no. 1 (June 2023): 44-51. https://doi.org/10.53525/jster.1231984.
EndNote Ghalmı L (June 1, 2023) Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control. Journal of Science, Technology and Engineering Research 4 1 44–51.
IEEE L. Ghalmı, “Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control”, Journal of Science, Technology and Engineering Research, vol. 4, no. 1, pp. 44–51, 2023, doi: 10.53525/jster.1231984.
ISNAD Ghalmı, Leila. “Optimizing the Performance of Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control”. Journal of Science, Technology and Engineering Research 4/1 (June 2023), 44-51. https://doi.org/10.53525/jster.1231984.
JAMA Ghalmı L. Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control. Journal of Science, Technology and Engineering Research. 2023;4:44–51.
MLA Ghalmı, Leila. “Optimizing the Performance of Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control”. Journal of Science, Technology and Engineering Research, vol. 4, no. 1, 2023, pp. 44-51, doi:10.53525/jster.1231984.
Vancouver Ghalmı L. Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control. Journal of Science, Technology and Engineering Research. 2023;4(1):44-51.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!