Our study aims to improve speech quality despite background noise, which often disrupts clear communication. We focus on developing efficient and effective models that work well on devices with limited resources. We draw inspiration from computational auditory scene analysis techniques to train our models to differentiate speech from background noise while keeping computational demands low. We introduce two models: CRN-WRC (Convolutional Recurrent Network without Residual Connections) and CRN-RCAG (Convolutional Recurrent Network with Residual Connections and Attention Gates). Our thorough testing shows that our models significantly enhance speech quality and understanding, even in noisy environments with varying background noise levels. Notably, the CRN-RCAG model consistently outperforms the CRN-WRC, particularly in handling untrained noise types. We achieve impressive results by integrating residual connections and attention gates into our models while maintaining computational efficiency.
Our study aims to improve speech quality despite background noise, which often disrupts clear communication. We focus on developing efficient and effective models that work well on devices with limited resources. We draw inspiration from computational auditory scene analysis techniques to train our models to differentiate speech from background noise while keeping computational demands low. We introduce two models: CRN-WRC (Convolutional Recurrent Network without Residual Connections) and CRN-RCAG (Convolutional Recurrent Network with Residual Connections and Attention Gates). Our thorough testing shows that our models significantly enhance speech quality and understanding, even in noisy environments with varying background noise levels. Notably, the CRN-RCAG model consistently outperforms the CRN-WRC, particularly in handling untrained noise types. We achieve impressive results by integrating residual connections and attention gates into our models while maintaining computational efficiency.
Primary Language | English |
---|---|
Subjects | Communications Engineering (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | June 15, 2024 |
Publication Date | June 21, 2024 |
Submission Date | April 16, 2024 |
Acceptance Date | May 27, 2024 |
Published in Issue | Year 2024 Volume: 5 Issue: 1 |