Research Article
BibTex RIS Cite

Impedance Controller Design and Dynamic Solution of The Manipulandum

Year 2024, Volume: 5 Issue: 1, 54 - 67, 21.06.2024
https://doi.org/10.53525/jster.1475764

Abstract

This article explains the dynamic solution of the manipulandum that interact with the human upper arm, controller design, model simulation and simulation results. Manipulandum design in this field are used in human-machine interaction experiments to understand human motor learning skills. While the subject of experiments is handled in the field of medicine, appropriate manipulandum design is the subject of the engineering field. In this article, the engineering qualities of the device were evaluated, its mathematical model obtained, dynamic model simulation made and control elements were examined, but the experimental use of this device, which is serve medical science were not discussed in this context. In the literature review; The manipulandum have a 2-dof, 5-link closed chain structure that moves in the horizontal plane, their movement is provided by 2 actuators, their interaction with the human upper arm is made with a fixed joystick (end-effector) on the 2nd link, their dimensions are smooth and compatible with the human upper arm. It is understood that the manipulandum must be of a size that can safely interact with the human arm. A conceptual design was made for the manipulandum and the movement parameters of the manipulandum were obtained by creating a kinematic model accordingly. While creating the dynamic model of the system; It is accepted that the manipulandum moves in the horizontal plane, therefore there is no effect of gravity, there is no spring, damper or similar potential energy source in the system, and there is heat loss due to friction. The dynamic model obtained with the Euler Lagrange Method (ELM) was compared with the system model obtained with the Simulink Simscape Multibody (SSM) tool in the Simulink environment; The consistency of model parameters (friction coefficients, moment of inertia, etc.) was mutually checked. Since human-manipulandum interaction requires force control, an impedance controller has been designed for the system dynamics, instead of classical controllers. The success of the controller on both the ELM dynamic model and the model created in SSM was examined and the results were evaluated. As a result of the simulations; It is understood that in order to achieve meaningful position and force control, there must be a proportional magnitude relationship between the torques applied to the model by the actuators and the force applied to the end-effector.

References

  • [1] A. (Lex) E. Q. vanDelden, C. (Lieke) E. Peper, Gert Kwakkel, and Peter J. Beek, “A Systematic Review of Bilateral Upper Limb Training Devices for Poststroke Rehabilitation”, Hindawi Publishing Corporation Stroke Research and Treatment, Volume 2012, Article ID 972069, 17 pages doi:10.1155/2012/972069
  • [2] Ian S. Howard, James N. Ingram, David W. Franklin, * and Daniel M. Wolpert*, “Gone in 0.6 Seconds: The Encoding of Motor Memories Depends on Recent Sensorimotor States”, The Journal of Neuroscience, September 12, 2012, 32(37):12756 –12768
  • [3] Ian S. Howard, Christopher Ford, Angelo Cangelosi & David W. Franklin, “Active lead-in variability affects motor memory formation and slows motor learning”, http://www.nature.com/scientificreports, August 10, 2017
  • [4] Hiroaki Gomi, Mitsuo Kawato, “Human arm stiffness and equilibrium-point trajectory during multi-joint movement”, Biological Cybernetics, Biol. Cybern.76, 163-171 (1997)
  • [5] BKIN Technologies Ltd. dba Kinarm., “Kinarm Tech End Point Lab”, PN14332-1-Nov-21, www.kinarm.com (accessed 24th May 2024)
  • [6] Klein J., Roach N., and Burdet E., “3DOM: A 3 Degree of Freedom Manipulandum to Investigate Redundant Motor Control”, IEEE Transactions On Haptics, Vol.7 No.2 April-June 2014
  • [7] Kostic M. D., Popovic M. B., “Influence of Planar Manipulandum to the Hand Trajectory During Point to Point Movement”, IEEE International Conference on Rehabilitation Robotics, ETH Zurich City, Switzerland, 2011
  • [8] Fong J., Crocher V., Tan Y., Oetomo D., and Mareels I., “EMU: A Transparent 3D Robotic Manipulandum for Upper-limb Rehabilitation”, International Conference on Rehabilitation Robotics (ICORR), QEII Centre, London, UK, July 17-20, 2017
  • [9] Ueyama Y., and Miyashita E., “Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement”, IEEE Transactions on Industrial Electronics, Vol. 61, No.2, February 2014
  • [10] Cai S., Wu W., and Xie L., “Dual-Arm Limb Rehabilitation Robot: Mechanism Design and Preliminary Experiments”, 6th International Conference on Control, Automation and Robotics, 2020
  • [11] Nguyen K. T., and Nguyen H. D., “Designing the Robot Arms for Upper Limb Recovery Movements of Post-Stroke Patients”, 6th International Conference on Green Technology and Sustainable Development (GTSD), 2022
  • [12] Asgari M., and Crouch D. L., “Estimating Human Upper Limb Impedance Parameters From a State-of-the-Art Computational Neuromusculoskeletal Model”, 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, Oct. 21 – Nov. 4, 2021
  • [13] Erwin de Vlugt, Alfred C. Schouten, Frans C.T. van der Helm, Piet C. Teerhuis, Guido G. Brouwn, “A force-controlled planar haptic device for movement control analysis of the human arm”, Journal of Neuroscience Methods 129 (2003) 151-168
  • [14] John J. Craig, “Introduction to Robotics Mechanics and Control”, Pearson Education 2018, Fourth Edition, Global Edition, ISBN 978-0-13-348979-8
  • [15] F. C. Park and K. M. Lynch, "Introduction to Robotics Mechanics, Planning, and Control", Park and Lynch 16:36 September 20, 2016
  • [16] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, "Robot Dynamics and Control" Second Edition, January 28, 2004
  • [17] Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah, "Robot Manipulator Control Theory and Practice", Second Edition, Revised and Expanded Copyright © 2004 by Marcel Dekker, Inc.
  • [18] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, "Robotics Modelling, Planning and Control", Springer-Verlag London Limited, 2009, DOI 10.1007/978-1-84628-642-1
  • [19] Asif SŠabanovic, Kouhei Ohnishi., "Motion Control Systems", First Edition, Published 2011 by John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82573-0

Manipulandum Empedans Kontrolcü Tasarımı ve Dinamik Çözümü

Year 2024, Volume: 5 Issue: 1, 54 - 67, 21.06.2024
https://doi.org/10.53525/jster.1475764

Abstract

Bu makale, insanın üst koluyla etkileşime giren manipulandumun dinamik çözümünü, kontrolcü tasarımını, model simülasyonunu ve simülasyon sonuçlarını açıklamaktadır. Bu alandaki manipulandum tasarımı, insanın motor öğrenme becerilerini anlamak için insan-makine etkileşimi deneylerinde kullanılmaktadır. Tıp alanında deney konusu ele alınırken, uygun manipulandum tasarımı mühendislik alanının konusudur. Bu makalede cihazın mühendislik özellikleri değerlendirilmiş, matematiksel modeli elde edilmiş, dinamik model simülasyonu yapılmış ve kontrol elemanları incelenmiş ancak bu cihazın tıp bilimine hizmet eden deneysel kullanımı bu bağlamda ele alınmamıştır. Yapılan literatür taramasında; Genelde mnipulandumların 2 serbestlik dereceli, 5 link kapalı zincir yapıda olduğu, yatay düzlemde hareket ettiği, bu hareketinin 2 adet aktüatör ile sağlandığı, insanın üst kolu ile etkileşiminin 2. link sonunda sabit bir joystick (uç efektör) ile sağlandığı, insan koluyla güvenli etkileşime girebilecek büyüklükte olması gerektiği anlaşılmaktadır. Manipulandum için konsept tasarım yapılmış ve buna göre kinematik model oluşturularak manipulandumun hareket parametreleri elde edilmiştir. Sistemin dinamik modeli oluşturulurken; Manipulandumun yatay düzlemde hareket ettiği, dolayısıyla yer çekimi etkisinin olmadığı, sistemde yay, damper veya benzeri potansiyel enerji kaynağının bulunmadığı, sürtünmeden dolayı ısı kaybının olduğu kabul edilmiştir. Euler Lagrange Metodu (ELM) ile elde edilen dinamik model, Simulink ortamında Simulink Simscape Multibody (SSM) ile elde edilen sistem modeli ile karşılaştırılmış; Model parametrelerinin (sürtünme katsayıları, eylemsizlik momenti vb.) tutarlılığı karşılıklı olarak kontrol edilmiştir. İnsan-manipulandum etkileşimi kuvvet kontrolü gerektirdiğinden, sistem dinamiğinin kontrolü için klasik kontrolcüler yerine bir empedans kontrolcüsü tasarlanmıştır. Kontrolörcünün hem ELM dinamik modeli hem de SSM'de oluşturulan model üzerindeki başarısı incelenerek sonuçlar değerlendirilmiştir. Simülasyonlar sonucunda; Anlamlı bir konum ve kuvvet kontrolü elde edebilmek için eyleyicilerin modele uyguladığı torklar ile uç efektöre uygulanan kuvvet arasında orantılı bir büyüklük ilişkisi olması gerektiği anlaşılmaktadır.

References

  • [1] A. (Lex) E. Q. vanDelden, C. (Lieke) E. Peper, Gert Kwakkel, and Peter J. Beek, “A Systematic Review of Bilateral Upper Limb Training Devices for Poststroke Rehabilitation”, Hindawi Publishing Corporation Stroke Research and Treatment, Volume 2012, Article ID 972069, 17 pages doi:10.1155/2012/972069
  • [2] Ian S. Howard, James N. Ingram, David W. Franklin, * and Daniel M. Wolpert*, “Gone in 0.6 Seconds: The Encoding of Motor Memories Depends on Recent Sensorimotor States”, The Journal of Neuroscience, September 12, 2012, 32(37):12756 –12768
  • [3] Ian S. Howard, Christopher Ford, Angelo Cangelosi & David W. Franklin, “Active lead-in variability affects motor memory formation and slows motor learning”, http://www.nature.com/scientificreports, August 10, 2017
  • [4] Hiroaki Gomi, Mitsuo Kawato, “Human arm stiffness and equilibrium-point trajectory during multi-joint movement”, Biological Cybernetics, Biol. Cybern.76, 163-171 (1997)
  • [5] BKIN Technologies Ltd. dba Kinarm., “Kinarm Tech End Point Lab”, PN14332-1-Nov-21, www.kinarm.com (accessed 24th May 2024)
  • [6] Klein J., Roach N., and Burdet E., “3DOM: A 3 Degree of Freedom Manipulandum to Investigate Redundant Motor Control”, IEEE Transactions On Haptics, Vol.7 No.2 April-June 2014
  • [7] Kostic M. D., Popovic M. B., “Influence of Planar Manipulandum to the Hand Trajectory During Point to Point Movement”, IEEE International Conference on Rehabilitation Robotics, ETH Zurich City, Switzerland, 2011
  • [8] Fong J., Crocher V., Tan Y., Oetomo D., and Mareels I., “EMU: A Transparent 3D Robotic Manipulandum for Upper-limb Rehabilitation”, International Conference on Rehabilitation Robotics (ICORR), QEII Centre, London, UK, July 17-20, 2017
  • [9] Ueyama Y., and Miyashita E., “Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement”, IEEE Transactions on Industrial Electronics, Vol. 61, No.2, February 2014
  • [10] Cai S., Wu W., and Xie L., “Dual-Arm Limb Rehabilitation Robot: Mechanism Design and Preliminary Experiments”, 6th International Conference on Control, Automation and Robotics, 2020
  • [11] Nguyen K. T., and Nguyen H. D., “Designing the Robot Arms for Upper Limb Recovery Movements of Post-Stroke Patients”, 6th International Conference on Green Technology and Sustainable Development (GTSD), 2022
  • [12] Asgari M., and Crouch D. L., “Estimating Human Upper Limb Impedance Parameters From a State-of-the-Art Computational Neuromusculoskeletal Model”, 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, Oct. 21 – Nov. 4, 2021
  • [13] Erwin de Vlugt, Alfred C. Schouten, Frans C.T. van der Helm, Piet C. Teerhuis, Guido G. Brouwn, “A force-controlled planar haptic device for movement control analysis of the human arm”, Journal of Neuroscience Methods 129 (2003) 151-168
  • [14] John J. Craig, “Introduction to Robotics Mechanics and Control”, Pearson Education 2018, Fourth Edition, Global Edition, ISBN 978-0-13-348979-8
  • [15] F. C. Park and K. M. Lynch, "Introduction to Robotics Mechanics, Planning, and Control", Park and Lynch 16:36 September 20, 2016
  • [16] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, "Robot Dynamics and Control" Second Edition, January 28, 2004
  • [17] Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah, "Robot Manipulator Control Theory and Practice", Second Edition, Revised and Expanded Copyright © 2004 by Marcel Dekker, Inc.
  • [18] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, "Robotics Modelling, Planning and Control", Springer-Verlag London Limited, 2009, DOI 10.1007/978-1-84628-642-1
  • [19] Asif SŠabanovic, Kouhei Ohnishi., "Motion Control Systems", First Edition, Published 2011 by John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82573-0
There are 19 citations in total.

Details

Primary Language English
Subjects Biomechatronics, Simulation, Modelling, and Programming of Mechatronics Systems
Journal Section Research Articles
Authors

Yaşar Yıldıran 0009-0003-2963-9203

Babek Naseri 0000-0001-6007-3875

Amir Nobahar 0000-0002-8248-4963

Reşat Özgür Doruk 0000-0002-9217-0845

Early Pub Date May 28, 2024
Publication Date June 21, 2024
Submission Date April 30, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Yıldıran, Y., Naseri, B., Nobahar, A., Doruk, R. Ö. (2024). Impedance Controller Design and Dynamic Solution of The Manipulandum. Journal of Science, Technology and Engineering Research, 5(1), 54-67. https://doi.org/10.53525/jster.1475764
AMA Yıldıran Y, Naseri B, Nobahar A, Doruk RÖ. Impedance Controller Design and Dynamic Solution of The Manipulandum. Journal of Science, Technology and Engineering Research. June 2024;5(1):54-67. doi:10.53525/jster.1475764
Chicago Yıldıran, Yaşar, Babek Naseri, Amir Nobahar, and Reşat Özgür Doruk. “Impedance Controller Design and Dynamic Solution of The Manipulandum”. Journal of Science, Technology and Engineering Research 5, no. 1 (June 2024): 54-67. https://doi.org/10.53525/jster.1475764.
EndNote Yıldıran Y, Naseri B, Nobahar A, Doruk RÖ (June 1, 2024) Impedance Controller Design and Dynamic Solution of The Manipulandum. Journal of Science, Technology and Engineering Research 5 1 54–67.
IEEE Y. Yıldıran, B. Naseri, A. Nobahar, and R. Ö. Doruk, “Impedance Controller Design and Dynamic Solution of The Manipulandum”, Journal of Science, Technology and Engineering Research, vol. 5, no. 1, pp. 54–67, 2024, doi: 10.53525/jster.1475764.
ISNAD Yıldıran, Yaşar et al. “Impedance Controller Design and Dynamic Solution of The Manipulandum”. Journal of Science, Technology and Engineering Research 5/1 (June 2024), 54-67. https://doi.org/10.53525/jster.1475764.
JAMA Yıldıran Y, Naseri B, Nobahar A, Doruk RÖ. Impedance Controller Design and Dynamic Solution of The Manipulandum. Journal of Science, Technology and Engineering Research. 2024;5:54–67.
MLA Yıldıran, Yaşar et al. “Impedance Controller Design and Dynamic Solution of The Manipulandum”. Journal of Science, Technology and Engineering Research, vol. 5, no. 1, 2024, pp. 54-67, doi:10.53525/jster.1475764.
Vancouver Yıldıran Y, Naseri B, Nobahar A, Doruk RÖ. Impedance Controller Design and Dynamic Solution of The Manipulandum. Journal of Science, Technology and Engineering Research. 2024;5(1):54-67.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!