Research Article
BibTex RIS Cite

Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem

Year 2019, , 79 - 90, 19.02.2020
https://doi.org/10.26650/JTL.2019.04.02.03

Abstract

This study emphasis on the type of pallet loading problem (PLP), which is closely associated with logistic management. In the study, which is made specifically for the distributor pallet loading problem, the dimensions of width, length and height of the products are considered to be the same, and the study, which is based on distributor pallet loading problem, has been conducted in a way that the dimensions of products will be reduced to the 2D pallet loading problem without loading a 3D pallet. The research concentrates on the constraint of loading different customers’ pallets so as not to mix their products during transportation and as the problem will be examined in 2-dimensions, instinctively objects are only allowed to be rotated in 2-dimensions. A Genetic Algorithm (GA) has been developed for the problem solution and this algorithm has been presented to give good results.

References

  • Ahn, S., Park, C., & Yoon, K. (2015b). An improved best-first branch and bound algorithm for the pallet-loading problem using a staircase structure. Expert Systems with Applications, 42(21), 7676-7683.
  • Ahn, S., Yoon, K., & Park, J. (2015a). A best-first branch and bound algorithm for the pallet-loading problem. International Journal of Production Research, 53(3), 835-849.
  • Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2005). A branch-and-cut algorithm for the pallet loading problem. Computers & Operations Research, 32(11), 3007-3029.
  • Beasley, J. E. (1985). An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research, 33(1), 49-64.
  • Bhattacharya, S., Roy, R., & Bhattacharya, S. (1998). An exact depth-first algorithm for the pallet loading problem. European Journal of Operational Research, 110(3), 610-625.
  • Birgin, E. G., Morabito, R., & Nishihara, F. H. (2005). A note on an L-approach for solving the manufacturer's pallet loading problem. Journal of the Operational Research Society, 56(12), 1448-1451.
  • Bischoff, E. E., Janetz, F., & Ratcliff, M. S. W. (1995). Loading pallets with non-identical items. European journal of operational research, 84(3), 681-692.
  • Chan, F. T., Bhagwat, R., Kumar, N., Tiwari, M. K., & Lam, P. (2006). Development of a decision support system for air-cargo pallets loading problem: A case study. Expert Systems with Applications, 31(3), 472-485.
  • Chen, C. S., Sarin, S., & Ram, B. (1991). The pallet packing problem for non-uniform box sizes. The International Journal of Production Research, 29(10), 1963-1968.
  • Dowsland, K. A. (1987a). An exact algorithm for the pallet loading problem. European Journal of Operational Research, 31(1), 78-84.
  • Dowsland, K. A. (1987b). A combined data-base and algorithmic approach to the pallet-loading problem. Journal of the Operational Research Society, 38(4), 341-345.
  • Gencer, C. (2000) 2-Boyutlu Palet Yükleme Problemleri için Geliştirilen Karışık Tam Sayılı Doğrusal Programlama Modelinin Yeniden Düzenlenmesi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 4(1), 11-17.
  • Jylänki, J. (2010). A thousand ways to pack the bin-a practical approach to two-dimensional rectangle bin packing. retrived from http://clb. demon. fi/files/RectangleBinPack. pdf.
  • Kır, S., & Yazgan, H. R. (2019). A novel hierarchical approach for a heterogeneous 3D pallet loading problem subject to factual loading and delivery constraints. European Journal of Industrial Engineering, 13(5), 627-650.
  • Lau, H. C., Chan, T. M., Tsui, W. T., Ho, G. T., & Choy, K. L. (2009). An AI approach for optimizing multi-pallet loading operations. Expert Systems with Applications, 36(3), 4296-4312.
  • Letchford, A. N., & Amaral, A. (2001). Analysis of upper bounds for the pallet loading problem. European Journal of Operational Research, 132(3), 582-593.
  • Lins, L., Lins, S., & Morabito, R. (2003). An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces. Journal of the Operational Research Society, 54(7), 777-789.
  • Martins, G. H., & Dell, R. F. (2008). Solving the pallet loading problem. European Journal of Operational Research, 184(2), 429-440.
  • Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
  • Neliβen, J. (1995). How to use structural constraints to compute an upper bound for the pallet loading problem. European Journal of Operational Research, 84(3), 662-680.
  • Scheithauer, G. (2018). Pallet Loading. In Introduction to Cutting and Packing Optimization (pp. 279-316). Springer, Cham.
  • Schuster, M., Bormann, R., Steidl, D., Reynolds-Haertle, S., & Stilman, M. (2010, October). Stable stacking for the distributor's pallet packing problem. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3646-3651). IEEE.
  • Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to genetic algorithms (pp. 15-37). Springer, Berlin, Heidelberg.
  • Song, X., Jones, D., Asgari, N., & Pigden, T. (2019). Multi-objective vehicle routing and loading with time window constraints: a real-life application. Annals of Operations Research, 1-27.
  • Song, X., Jones, D., Asgari, N., & Pigden, T. (2019). Multi-objective vehicle routing and loading with time window constraints: a real-life application. Annals of Operations Research, 1-27.
  • Tarnowski, A. G., Terno, J., & Scheithauer, G. (1994). A polynomial time algorithm for the guillotine pallet loading problem. INFOR: Information Systems and Operational Research, 32(4), 275-287.
  • Terno, J., Scheithauer, G., Sommerweiß, U., & Riehme, J. (2000). An efficient approach for the multi-pallet loading problem. European Journal of Operational Research, 123(2), 372-381.
  • Terno, J., Scheithauer, G., Sommerweiß, U., & Riehme, J. (2000). An efficient approach for the multi-pallet loading problem. European Journal of Operational Research, 123(2), 372-381.
  • Young-Gun, G., & Kang, M. K. (2001). A fast algorithm for two-dimensional pallet loading problems of large size. European Journal of Operational Research, 134(1), 193-202. Topçu, Y.I., Kabak

İki Boyutlu Palet Yerleştirme Problemi İçin Metasezgisel Çözüm Yaklaşımı

Year 2019, , 79 - 90, 19.02.2020
https://doi.org/10.26650/JTL.2019.04.02.03

Abstract

Bu çalışma, lojistik yönetimini yakından ilgilendiren palet yükleme problem (PYP) tipi üzerine yoğunlaşan bir çalışmadır. Dağıtıcı palet yükleme problemi özelinde yapılan bu çalışmada ürünlerin en, boy ve yükseklik ölçülerinden bir boyutu aynı olacak şekilde kabul edilip çalışma 3 boyutlu palet yüklemeden 2 boyutlu palet yükleme problemine indirgenecek şekilde incelenmiştir. Öyle ki, farklı müşterilerin ürünlerini taşıma sırasında karıştırmayacak şekilde paletlere yüklenmesi kısıtı üzerine yoğunlaşır ve problem 2-boyutta inceleneceği için de doğal olarak nesnelerin sadece 2-boyutta döndürülmesine izin verilmiştir. Problem çözümü için bir Genetik Algoritma (GA) geliştirilmiş ve geliştirilen bu algoritmanın iyi sonuç verdiği gösterilmiştir.

References

  • Ahn, S., Park, C., & Yoon, K. (2015b). An improved best-first branch and bound algorithm for the pallet-loading problem using a staircase structure. Expert Systems with Applications, 42(21), 7676-7683.
  • Ahn, S., Yoon, K., & Park, J. (2015a). A best-first branch and bound algorithm for the pallet-loading problem. International Journal of Production Research, 53(3), 835-849.
  • Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2005). A branch-and-cut algorithm for the pallet loading problem. Computers & Operations Research, 32(11), 3007-3029.
  • Beasley, J. E. (1985). An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research, 33(1), 49-64.
  • Bhattacharya, S., Roy, R., & Bhattacharya, S. (1998). An exact depth-first algorithm for the pallet loading problem. European Journal of Operational Research, 110(3), 610-625.
  • Birgin, E. G., Morabito, R., & Nishihara, F. H. (2005). A note on an L-approach for solving the manufacturer's pallet loading problem. Journal of the Operational Research Society, 56(12), 1448-1451.
  • Bischoff, E. E., Janetz, F., & Ratcliff, M. S. W. (1995). Loading pallets with non-identical items. European journal of operational research, 84(3), 681-692.
  • Chan, F. T., Bhagwat, R., Kumar, N., Tiwari, M. K., & Lam, P. (2006). Development of a decision support system for air-cargo pallets loading problem: A case study. Expert Systems with Applications, 31(3), 472-485.
  • Chen, C. S., Sarin, S., & Ram, B. (1991). The pallet packing problem for non-uniform box sizes. The International Journal of Production Research, 29(10), 1963-1968.
  • Dowsland, K. A. (1987a). An exact algorithm for the pallet loading problem. European Journal of Operational Research, 31(1), 78-84.
  • Dowsland, K. A. (1987b). A combined data-base and algorithmic approach to the pallet-loading problem. Journal of the Operational Research Society, 38(4), 341-345.
  • Gencer, C. (2000) 2-Boyutlu Palet Yükleme Problemleri için Geliştirilen Karışık Tam Sayılı Doğrusal Programlama Modelinin Yeniden Düzenlenmesi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 4(1), 11-17.
  • Jylänki, J. (2010). A thousand ways to pack the bin-a practical approach to two-dimensional rectangle bin packing. retrived from http://clb. demon. fi/files/RectangleBinPack. pdf.
  • Kır, S., & Yazgan, H. R. (2019). A novel hierarchical approach for a heterogeneous 3D pallet loading problem subject to factual loading and delivery constraints. European Journal of Industrial Engineering, 13(5), 627-650.
  • Lau, H. C., Chan, T. M., Tsui, W. T., Ho, G. T., & Choy, K. L. (2009). An AI approach for optimizing multi-pallet loading operations. Expert Systems with Applications, 36(3), 4296-4312.
  • Letchford, A. N., & Amaral, A. (2001). Analysis of upper bounds for the pallet loading problem. European Journal of Operational Research, 132(3), 582-593.
  • Lins, L., Lins, S., & Morabito, R. (2003). An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces. Journal of the Operational Research Society, 54(7), 777-789.
  • Martins, G. H., & Dell, R. F. (2008). Solving the pallet loading problem. European Journal of Operational Research, 184(2), 429-440.
  • Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
  • Neliβen, J. (1995). How to use structural constraints to compute an upper bound for the pallet loading problem. European Journal of Operational Research, 84(3), 662-680.
  • Scheithauer, G. (2018). Pallet Loading. In Introduction to Cutting and Packing Optimization (pp. 279-316). Springer, Cham.
  • Schuster, M., Bormann, R., Steidl, D., Reynolds-Haertle, S., & Stilman, M. (2010, October). Stable stacking for the distributor's pallet packing problem. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3646-3651). IEEE.
  • Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to genetic algorithms (pp. 15-37). Springer, Berlin, Heidelberg.
  • Song, X., Jones, D., Asgari, N., & Pigden, T. (2019). Multi-objective vehicle routing and loading with time window constraints: a real-life application. Annals of Operations Research, 1-27.
  • Song, X., Jones, D., Asgari, N., & Pigden, T. (2019). Multi-objective vehicle routing and loading with time window constraints: a real-life application. Annals of Operations Research, 1-27.
  • Tarnowski, A. G., Terno, J., & Scheithauer, G. (1994). A polynomial time algorithm for the guillotine pallet loading problem. INFOR: Information Systems and Operational Research, 32(4), 275-287.
  • Terno, J., Scheithauer, G., Sommerweiß, U., & Riehme, J. (2000). An efficient approach for the multi-pallet loading problem. European Journal of Operational Research, 123(2), 372-381.
  • Terno, J., Scheithauer, G., Sommerweiß, U., & Riehme, J. (2000). An efficient approach for the multi-pallet loading problem. European Journal of Operational Research, 123(2), 372-381.
  • Young-Gun, G., & Kang, M. K. (2001). A fast algorithm for two-dimensional pallet loading problems of large size. European Journal of Operational Research, 134(1), 193-202. Topçu, Y.I., Kabak
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İrem Ünal This is me

Hakan Görgün This is me

Serol Bulkan This is me

Publication Date February 19, 2020
Submission Date December 1, 2019
Acceptance Date December 31, 2019
Published in Issue Year 2019

Cite

APA Ünal, İ., Görgün, H., & Bulkan, S. (2020). Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem. Journal of Transportation and Logistics, 4(2), 79-90. https://doi.org/10.26650/JTL.2019.04.02.03
AMA Ünal İ, Görgün H, Bulkan S. Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem. JTL. February 2020;4(2):79-90. doi:10.26650/JTL.2019.04.02.03
Chicago Ünal, İrem, Hakan Görgün, and Serol Bulkan. “Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem”. Journal of Transportation and Logistics 4, no. 2 (February 2020): 79-90. https://doi.org/10.26650/JTL.2019.04.02.03.
EndNote Ünal İ, Görgün H, Bulkan S (February 1, 2020) Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem. Journal of Transportation and Logistics 4 2 79–90.
IEEE İ. Ünal, H. Görgün, and S. Bulkan, “Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem”, JTL, vol. 4, no. 2, pp. 79–90, 2020, doi: 10.26650/JTL.2019.04.02.03.
ISNAD Ünal, İrem et al. “Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem”. Journal of Transportation and Logistics 4/2 (February 2020), 79-90. https://doi.org/10.26650/JTL.2019.04.02.03.
JAMA Ünal İ, Görgün H, Bulkan S. Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem. JTL. 2020;4:79–90.
MLA Ünal, İrem et al. “Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem”. Journal of Transportation and Logistics, vol. 4, no. 2, 2020, pp. 79-90, doi:10.26650/JTL.2019.04.02.03.
Vancouver Ünal İ, Görgün H, Bulkan S. Metaheuristic Solution Approach for Two-Dimensional Palette Placement Problem. JTL. 2020;4(2):79-90.



The JTL is being published twice (in April and October of) a year, as an official international peer-reviewed journal of the School of Transportation and Logistics at Istanbul University.