Research Article
BibTex RIS Cite

ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴

Year 2019, , 166 - 174, 29.07.2019
https://doi.org/10.33773/jum.565267

Abstract

In the present paper we consider weak biharmonic rotational surfaces in Euclidean 4-space E⁴. We have proved that the general rotational surface of parallel mean curvature vector field is weak biharmonic then either it is minimal or a constant mean curvature. Further, we show that if Vranceanu surface of constant mean curvature is weak-biharmonic then it is a Clifford torus in E⁴.

References

  • Referans1 K. Arslan, B. Kılıç Bayram, B. Bulca and G. Öztürk, Generalized Rotation Surfaces in E⁴. Results in Math. 61, 315--327 (2012).Referans2 : K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic anti-invariant submanifolds in Sasakian space forms. Beitrage Algebra Geom. 48, 191--207 (2007). Referans3 : A. Balmus, S. Montaldo and C. Oniciuc, Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168, 201--220 (2008). Referans4: A. Balmus, S. Montaldo and C. Oniciuc, Biharmonic Hypersurfaces in 4-Dimensional Space Forms. Math. Nachr. 283, 1696-1705 (2010). Referans5 : M. Barros and O.J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 129, 2545-2549 (1995). Referans6 : R. Caddeo, S. Montaldo and C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130, 109--123 (2002). Referans7 : B. Y. Chen,Geometry of Submanifolds, Dekker, New York (1973).Referans8: B.Y. Chen, A report on submanifolds of finite type. Soochow J. Math. 22, 117--337 (1996). Referans9 : B-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Memoirs of Fac. of Science, Kyushu University, Series A 45, 323-347 (1991). Referans10 : F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12, 191-210 (1890). Referans11 : D.V. Cuong, Surfaces of Revolution with Constant Gaussian Curvature in Four-Space, Asian-Europian J. Math. 6 (2013). Referans12 : De Smet, D.J., Dillen F., Verstrealen L.and Vrancken L. A pointwise inequality in submanifold theory. Arc. Mat. (Bruno), 115-128 (1999).Referans13: F. Defever, Hypersurfaces of E⁴ with harmonic mean curvature vector field, Math. Nachr. 196, 61-69 1998). Referans14 : F. Defever, Bijdrageln tot de theorie van conform platte, semisymmetrische, en biharmonische deelvari ̈eteiten, Doctoral Thesis, Leuven (1999). Referans15 : I. Dimitric. Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst.Math. Acad. Sinica, 20, 53-65 (1992). Referans16 : U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space E⁴ with pointwise 1-type Gauss map, Math. Com., 17, 71-81 (2012). Referans17 : G. Ganchev and V. Milousheva, On the Theory of Surfaces in the Four-dimensional Euclidean Space. Kodai Math. J., 31, 183-198 (2008).Referans18: Th. Hasanis and Th. Vlachos, Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr. 172, 145-169 (1995). Referans19 : B. Kiliç, K. Arslan , Ü. Lumiste and C. Murathan, On weak biharmonic submanifolds and 2-parallelity. Diff. Geo. Dyn. Sys. 5, 39-48 (2003). Referans20: D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic Submanifolds of Cⁿ. arXiv:0902.0268v1 [math.DG] 2 Feb 2009. Referans21: N. H. Kuiper, Minimal Total Absolute Curvature for Immersions. Invent. Math., 10, 209-238 (1970). Referans22: C. Moore, Surfaces of Rotations in a Space of Four Dimensions, Ann. Math. 2nd Ser., 21, 81-93 (1919). Referans23: Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds. arXiv:math.DG/09011507v1. Referans24: Y.-L. Ou, Some recent progress of Biharmonic Submanifolds, arXiv:1511.09103v1 [math.DG] 29 Nov 2015. Referans25: G. Vranceanu, Surfaces de Rotation dans E⁴, rev. Roum. Math. Pures Appl. XXII(6), 857-862 (1977). Referans26: Y.C. Wong, Contributions to the theory of surfaces in 4-space of constant curvature, Trans. Amer. Math. Soc, 59, 467-507 (1946). Referans27: D.W. Yoon, Some Properties of the Clifford Torus as Rotation Surfaces, Indian J. Pure Appl. Math. 34, 907-915 (2003).Referans28: S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96,346--366 (1974).
Year 2019, , 166 - 174, 29.07.2019
https://doi.org/10.33773/jum.565267

Abstract

References

  • Referans1 K. Arslan, B. Kılıç Bayram, B. Bulca and G. Öztürk, Generalized Rotation Surfaces in E⁴. Results in Math. 61, 315--327 (2012).Referans2 : K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic anti-invariant submanifolds in Sasakian space forms. Beitrage Algebra Geom. 48, 191--207 (2007). Referans3 : A. Balmus, S. Montaldo and C. Oniciuc, Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168, 201--220 (2008). Referans4: A. Balmus, S. Montaldo and C. Oniciuc, Biharmonic Hypersurfaces in 4-Dimensional Space Forms. Math. Nachr. 283, 1696-1705 (2010). Referans5 : M. Barros and O.J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 129, 2545-2549 (1995). Referans6 : R. Caddeo, S. Montaldo and C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130, 109--123 (2002). Referans7 : B. Y. Chen,Geometry of Submanifolds, Dekker, New York (1973).Referans8: B.Y. Chen, A report on submanifolds of finite type. Soochow J. Math. 22, 117--337 (1996). Referans9 : B-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Memoirs of Fac. of Science, Kyushu University, Series A 45, 323-347 (1991). Referans10 : F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12, 191-210 (1890). Referans11 : D.V. Cuong, Surfaces of Revolution with Constant Gaussian Curvature in Four-Space, Asian-Europian J. Math. 6 (2013). Referans12 : De Smet, D.J., Dillen F., Verstrealen L.and Vrancken L. A pointwise inequality in submanifold theory. Arc. Mat. (Bruno), 115-128 (1999).Referans13: F. Defever, Hypersurfaces of E⁴ with harmonic mean curvature vector field, Math. Nachr. 196, 61-69 1998). Referans14 : F. Defever, Bijdrageln tot de theorie van conform platte, semisymmetrische, en biharmonische deelvari ̈eteiten, Doctoral Thesis, Leuven (1999). Referans15 : I. Dimitric. Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst.Math. Acad. Sinica, 20, 53-65 (1992). Referans16 : U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space E⁴ with pointwise 1-type Gauss map, Math. Com., 17, 71-81 (2012). Referans17 : G. Ganchev and V. Milousheva, On the Theory of Surfaces in the Four-dimensional Euclidean Space. Kodai Math. J., 31, 183-198 (2008).Referans18: Th. Hasanis and Th. Vlachos, Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr. 172, 145-169 (1995). Referans19 : B. Kiliç, K. Arslan , Ü. Lumiste and C. Murathan, On weak biharmonic submanifolds and 2-parallelity. Diff. Geo. Dyn. Sys. 5, 39-48 (2003). Referans20: D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic Submanifolds of Cⁿ. arXiv:0902.0268v1 [math.DG] 2 Feb 2009. Referans21: N. H. Kuiper, Minimal Total Absolute Curvature for Immersions. Invent. Math., 10, 209-238 (1970). Referans22: C. Moore, Surfaces of Rotations in a Space of Four Dimensions, Ann. Math. 2nd Ser., 21, 81-93 (1919). Referans23: Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds. arXiv:math.DG/09011507v1. Referans24: Y.-L. Ou, Some recent progress of Biharmonic Submanifolds, arXiv:1511.09103v1 [math.DG] 29 Nov 2015. Referans25: G. Vranceanu, Surfaces de Rotation dans E⁴, rev. Roum. Math. Pures Appl. XXII(6), 857-862 (1977). Referans26: Y.C. Wong, Contributions to the theory of surfaces in 4-space of constant curvature, Trans. Amer. Math. Soc, 59, 467-507 (1946). Referans27: D.W. Yoon, Some Properties of the Clifford Torus as Rotation Surfaces, Indian J. Pure Appl. Math. 34, 907-915 (2003).Referans28: S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96,346--366 (1974).
There are 1 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Kadri Arslan 0000-0002-1440-7050

Merve Harmanlı This is me

Betül Bulca

Publication Date July 29, 2019
Submission Date May 14, 2019
Acceptance Date August 24, 2019
Published in Issue Year 2019

Cite

APA Arslan, K., Harmanlı, M., & Bulca, B. (2019). ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. Journal of Universal Mathematics, 2(2), 166-174. https://doi.org/10.33773/jum.565267
AMA Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. July 2019;2(2):166-174. doi:10.33773/jum.565267
Chicago Arslan, Kadri, Merve Harmanlı, and Betül Bulca. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics 2, no. 2 (July 2019): 166-74. https://doi.org/10.33773/jum.565267.
EndNote Arslan K, Harmanlı M, Bulca B (July 1, 2019) ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. Journal of Universal Mathematics 2 2 166–174.
IEEE K. Arslan, M. Harmanlı, and B. Bulca, “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”, JUM, vol. 2, no. 2, pp. 166–174, 2019, doi: 10.33773/jum.565267.
ISNAD Arslan, Kadri et al. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics 2/2 (July 2019), 166-174. https://doi.org/10.33773/jum.565267.
JAMA Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. 2019;2:166–174.
MLA Arslan, Kadri et al. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics, vol. 2, no. 2, 2019, pp. 166-74, doi:10.33773/jum.565267.
Vancouver Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. 2019;2(2):166-74.