TIME-DEPENDENT NEUTRAL STOCHASTIC DELAY PARTIAL DIFFERENTIAL EQUATIONS DRIVEN BY ROSENBLATT PROCESS IN HILBERT SPACE
Year 2018,
Volume: 1 Issue: 2, 88 - 103, 31.07.2018
El Hassan Lakhel
Abdelmonaim Tlidi
Abstract
In this paper, we investigate a class of time-dependent neutral stochastic functional dierential equations with nite delay driven by Rosenblatt process in a real separable Hilbert space. We prove the existence of unique mild solution by the well-known Banach xed point principle. At the end we provide a practical example in order to illustrate the viability of our result.
References
- P. Acquistapace and B. Terreni., A unified approach to abstract linear parabolic equations, Tend. Sem. Mat. Univ. Padova, Vol. 78, pp. 47-107 (1987).
- D. Aoued and S. Baghli, Mild solutions for Perturbed evolution equations with infinite state-dependent delay, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 59, pp. 1-24 (2013).
- B. Boufoussi, S. Hajji and E. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afrika Matematika, Vol. 23, N. 2, pp. 173-194 (2011).
- T. Caraballo, M.J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis, Vol. 74, pp. 3671-3684 (2011).
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Cambridge University Press, Cambridge, (1992).
- S. Hajji and E. Lakhel, Existence and uniqueness of mild solutions to neutral SFDEs driven by a fractional Brownian motion with non-Lipschitz coecients, Journal of Numerical Mathematics and Stochastics, Vol. 7, N. 1, pp. 14-29 (2015).
- Lakhel, E. Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps, Random Oper. Stoch. Equ., Vol. 24, N. 2, pp. 113-127 (2016).
- N. N. Leonenko and V.V. Ahn., Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stoch. Anal., Vol. 14, pp. 27-46 (2001).
- M. Maejima and C. A. Tudor, On the distribution of the Rosenblatt process, Statist. Probab. Letters, Vol. 83, pp. 1490-1495 (2013).
- M. Maejima, C. A. Tudor, Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl., Vol. 25, pp. 1043-1056 (2007).
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, (1983).
- V. Pipiras and M.S. Taqqu, Integration questions related to the fractional Brownian motion. Probability Theory and Related Fields, Vol. 118, pp. 251-281 (2001).
- M. Rosenblatt, Independence and dependence, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory, pp. 431-443, University of California Press, Berkeley, Calif., (1961).
- M. S. Taqqu, Weak convergence to fractional Brownian motion and the Rosenblatt Process, Z. Wahr. Geb., Vol. 31, pp. 287-302 (1975).
- M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrschein-lichkeitstheor, Verw. Geb., Vol. 50, pp. 53-83 (1979).
- C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Statist., Vol. 12, pp. 230-257 (2008).
Year 2018,
Volume: 1 Issue: 2, 88 - 103, 31.07.2018
El Hassan Lakhel
Abdelmonaim Tlidi
References
- P. Acquistapace and B. Terreni., A unified approach to abstract linear parabolic equations, Tend. Sem. Mat. Univ. Padova, Vol. 78, pp. 47-107 (1987).
- D. Aoued and S. Baghli, Mild solutions for Perturbed evolution equations with infinite state-dependent delay, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 59, pp. 1-24 (2013).
- B. Boufoussi, S. Hajji and E. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afrika Matematika, Vol. 23, N. 2, pp. 173-194 (2011).
- T. Caraballo, M.J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis, Vol. 74, pp. 3671-3684 (2011).
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Cambridge University Press, Cambridge, (1992).
- S. Hajji and E. Lakhel, Existence and uniqueness of mild solutions to neutral SFDEs driven by a fractional Brownian motion with non-Lipschitz coecients, Journal of Numerical Mathematics and Stochastics, Vol. 7, N. 1, pp. 14-29 (2015).
- Lakhel, E. Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps, Random Oper. Stoch. Equ., Vol. 24, N. 2, pp. 113-127 (2016).
- N. N. Leonenko and V.V. Ahn., Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stoch. Anal., Vol. 14, pp. 27-46 (2001).
- M. Maejima and C. A. Tudor, On the distribution of the Rosenblatt process, Statist. Probab. Letters, Vol. 83, pp. 1490-1495 (2013).
- M. Maejima, C. A. Tudor, Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl., Vol. 25, pp. 1043-1056 (2007).
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, (1983).
- V. Pipiras and M.S. Taqqu, Integration questions related to the fractional Brownian motion. Probability Theory and Related Fields, Vol. 118, pp. 251-281 (2001).
- M. Rosenblatt, Independence and dependence, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory, pp. 431-443, University of California Press, Berkeley, Calif., (1961).
- M. S. Taqqu, Weak convergence to fractional Brownian motion and the Rosenblatt Process, Z. Wahr. Geb., Vol. 31, pp. 287-302 (1975).
- M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrschein-lichkeitstheor, Verw. Geb., Vol. 50, pp. 53-83 (1979).
- C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Statist., Vol. 12, pp. 230-257 (2008).